702 research outputs found
Measurement of Two-Qubit States by a Two-Island Single Electron Transistor
We solve the master equations of two charged qubits measured by a
single-electron transistor (SET) consisted of two islands. We show that in the
sequential tunneling regime the SET current can be used for reading out results
of quantum calculations and providing evidences of two-qubit entanglement,
especially when the interaction between the two qubits is weak
Spin transport of electrons through quantum wires with spatially-modulated strength of the Rashba spin-orbit interaction
We study ballistic transport of spin-polarized electrons through quantum
wires in which the strength of the Rashba spin-orbit interaction (SOI) is
spatially modulated. Subband mixing, due to SOI, between the two lowest
subbands is taken into account. Simplified approximate expressions for the
transmission are obtained for electron energies close to the bottom of the
first subband and near the value for which anticrossing of the two lowest
subbands occurs. In structures with periodically varied SOI strength, {\it
square-wave} modulation on the spin transmission is found when only one subband
is occupied and its possible application to the spin transistor is discussed.
When two subbands are occupied the transmission is strongly affected by the
existence of SOI interfaces as well as by the subband mixing
Asher Lev at the Israel Museum: Stereotyping art and craft
Jesper Svartvik and Jakob Wirén (Eds.), Religious stereotyping and interreligious relations. New York: Palgrave Macmillan, 2013, reproduced with permission of Palgrave Macmillan. This extract is taken from the author's original manuscript and has not been edited. The definitive, published version of record is available here: http://www.palgrave.com/page/detail/religious-stereotyping-and-interreligious-relations-jesper-svartvik/?K=9781137344601 and http://www.palgraveconnect.com/pc/doifinder/10.1057/978113734267
Quantum Phase Transition in a Resonant Level Coupled to Interacting Leads
An interacting one-dimensional electron system, the Luttinger liquid, is
distinct from the "conventional" Fermi liquids formed by interacting electrons
in two and three dimensions. Some of its most spectacular properties are
revealed in the process of electron tunneling: as a function of the applied
bias or temperature the tunneling current demonstrates a non-trivial power-law
suppression. Here, we create a system which emulates tunneling in a Luttinger
liquid, by controlling the interaction of the tunneling electron with its
environment. We further replace a single tunneling barrier with a
double-barrier resonant level structure and investigate resonant tunneling
between Luttinger liquids. For the first time, we observe perfect transparency
of the resonant level embedded in the interacting environment, while the width
of the resonance tends to zero. We argue that this unique behavior results from
many-body physics of interacting electrons and signals the presence of a
quantum phase transition (QPT). In our samples many parameters, including the
interaction strength, can be precisely controlled; thus, we have created an
attractive model system for studying quantum critical phenomena in general. Our
work therefore has broadly reaching implications for understanding QPTs in more
complex systems, such as cold atoms and strongly correlated bulk materials.Comment: 11 pages total (main text + supplementary
Driven coherent oscillations of a single electron spin in a quantum dot
The ability to control the quantum state of a single electron spin in a
quantum dot is at the heart of recent developments towards a scalable
spin-based quantum computer. In combination with the recently demonstrated
exchange gate between two neighbouring spins, driven coherent single spin
rotations would permit universal quantum operations. Here, we report the
experimental realization of single electron spin rotations in a double quantum
dot. First, we apply a continuous-wave oscillating magnetic field, generated
on-chip, and observe electron spin resonance in spin-dependent transport
measurements through the two dots. Next, we coherently control the quantum
state of the electron spin by applying short bursts of the oscillating magnetic
field and observe about eight oscillations of the spin state (so-called Rabi
oscillations) during a microsecond burst. These results demonstrate the
feasibility of operating single-electron spins in a quantum dot as quantum
bits.Comment: Total 25 pages. 11 pages main text, 5 figures, 9 pages supplementary
materia
Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices
Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective
components for spintronic applications and are of fundamental interest in the
study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report
on the dependence of the 1D Lande g-factor g* and 0.7 anomaly on electron
density and confinement in QPCs with two different top-gate architectures. We
obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding
previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in
InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential,
particularly for the lowest 1D subband. This suggests careful management of the
QPC's confinement potential may enable the high g* desirable for spintronic
applications without resorting to narrow-gap materials such as InAs or InSb.
The 0.7 anomaly and zero-bias peak are also highly sensitive to confining
potential, explaining the conflicting density dependencies of the 0.7 anomaly
in the literature.Comment: 23 pages, 7 figure
Controlling Spin Qubits in Quantum Dots
We review progress on the spintronics proposal for quantum computing where
the quantum bits (qubits) are implemented with electron spins. We calculate the
exchange interaction of coupled quantum dots and present experiments, where the
exchange coupling is measured via transport. Then, experiments on single spins
on dots are described, where long spin relaxation times, on the order of a
millisecond, are observed. We consider spin-orbit interaction as sources of
spin decoherence and find theoretically that also long decoherence times are
expected. Further, we describe the concept of spin filtering using quantum dots
and show data of successful experiments. We also show an implementation of a
read out scheme for spin qubits and define how qubits can be measured with high
precision. Then, we propose new experiments, where the spin decoherence time
and the Rabi oscillations of single electrons can be measured via charge
transport through quantum dots. Finally, all these achievements have promising
applications both in conventional and quantum information processing.Comment: 18 pages, 6 figure
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Genetic regulation of pituitary gland development in human and mouse
Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans
The sperm factor: paternal impact beyond genes
The fact that sperm carry more than the paternal DNA has only been discovered just over a decade ago. With this discovery, the idea that the paternal condition may have direct implications for the fitness of the offspring had to be revisited. While this idea is still highly debated, empirical evidence for paternal effects is accumulating. Male condition not only affects male fertility but also offspring early development and performance later in life. Several factors have been identified as possible carriers of non-genetic information, but we still know little about their origin and function and even less about their causation. I consider four possible non-mutually exclusive adaptive and non-adaptive explanations for the existence of paternal effects in an evolutionary context. In addition, I provide a brief overview of the main non-genetic components found in sperm including DNA methylation, chromatin modifications, RNAs and proteins. I discuss their putative functions and present currently available examples for their role in transferring non-genetic information from the father to the offspring. Finally, I identify some of the most important open questions and present possible future research avenues
- …