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Abstract 

The fact that sperm carry more than just the paternal DNA has only been 

discovered just over a decade ago. With this discovery, the idea that the 

paternal condition may have direct implications for the fitness of the offspring 20	

had to be revisited. While this idea is still highly debated, empirical evidence 

for paternal effects is accumulating. Male condition not only affects male 

fertility but also offspring early development and performance later in life. 

Several factors have been identified as possible carriers of non-genetic 

information, but we still know little about their origin and function and even 25	

less about their causation. I consider four possible non-mutually exclusive 

adaptive and non-adaptive explanations for the existence of paternal effects in 

an evolutionary context. In addition, I provide a brief overview of the main 

non-genetic components found in sperm including DNA methylation, 

chromatin modifications, RNAs and proteins. I discuss their putative functions 30	

and present currently available examples for their role in transferring non-

genetic information from the father to the offspring. Finally, I identify some of 

the most important open questions and present possible future research 

avenues.  
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Introduction 35	

The importance of non-genetic factors for the transmission of information from 

parents to offspring is increasingly recognized (Bonduriansky and Day, 2009; 

Bonduriansky, 2012; Bondurianksy and Day, 2018). In animals, the relatively 

bigger size of the female gamete – the egg – and the resulting transfer of 

many different non-genetic components from the mother to her offspring has 40	

led to an early recognition of the role of maternal non-genetic effects in 

determining offspring phenotype (e.g. Dickerson, 1947; Willham, 1963; 

Legates, 1972; see also Bernardo, 1996; Mousseau and Fox, 1998; Wade, 

1998; Marshall and Uller, 2007 for reviews). In contrast, the small compact 

size and the highly reduced cytoplasm of the animal male gamete – the sperm 45	

– was one of the main reasons for the assumption that paternal condition 

plays little to no role in determining offspring phenotype. This assumption has 

been overturned just over decade ago and it is now recognised that sperm 

contribute more than the paternal haploid genome (Krawetz, 2005). In this 

review, I provide an overview of the potential non-genetic mechanisms and 50	

factors transferred via sperm into the zygote. I discuss the evidence for their 

effects across generations, their putative causes and potential consequences 

in an evolutionary context. This is by no means a complete account and only 

provides small insights into a highly complex and fascinating world, but it may 

stimulate further research into the many processes that can be summarized 55	

as “sperm factor”. 
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Male condition and sperm phenotype 60	

Male condition is affected by environmental factors such as diet, temperature 

and social interactions and these effects are often reflected in the 

characteristics of a male’s ejaculate. Nutritional stress is known to negatively 

affect sperm quality and can lead to an increase in the number of 

malfunctioning and morphologically abnormal sperm, which in turn may affect 65	

male fertilisation success (Gage and Cook, 1994; Merrells et al., 2009; Perry 

and Rowe, 2010; Tigreros, 2013; Kahrl and Cox, 2015;). Similarly, variation in 

environmental temperature affects ejaculate traits such as sperm number and 

sperm morphology in ectotherm insects (Fox et al., 2006) and fish (Breckels 

and Neff, 2013) but also in endotherm mammals (e.g. Al-Khanaan et al., 70	

2015). Finally, aspects of male social environment such as male:female ratio 

and the perceived intensity of sperm competition are known to affect sperm 

numbers (Arnaud et al., 2001; Pilastro et al., 2002; Pizzari et al., 2003), sperm 

swimming velocity (Burness et al., 2004) and sperm morphology (Crean and 

Marshall, 2008; Immler et al., 2010). However, while these environmentally 75	

induced changes in ejaculate traits are well established, the potential 

consequences of such changes for the next generation are poorly understood. 

In order to estimate the importance of paternal effects we need to understand 

the non-genetic factors carried by sperm and which part of the zygotic 

development they might affect. 80	

 

Why do paternal effects exist? 

While the evidence for an effect of the paternal condition on the offspring is 

rapidly mounting (e.g. Curley et al., 2011; Soubry, 2015; Illum et al., 2018 for 
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review), the evolutionary reason for the existence of paternal effects is less 85	

clear. Here below, I discuss four non-mutually exclusive hypotheses that may 

serve as possible explanations for the transfer of non-genetic information from 

the father to the offspring.  

 

Paternal effects are non-adaptive 90	

The transfer of non-genetic factors through sperm could be non-adaptive 

noise caused by physiological processes affecting the epigenetic mechanisms 

in the male germline in response to changing environmental conditions 

experienced by the father. Many of the experimental manipulations used to 

study paternal effects involve a change in the stress level experienced by the 95	

male for a defined period during life. Stress generally evokes strong 

physiological responses, which may negatively affect the germline and with 

that male reproduction (McGrady, 2009). These negative effects may include 

an increase in the production of reactive oxygen species (Dickinson and 

Chang, 2011) and elevated activity of repetitive elements (Capy et al., 2000), 100	

both of which jeopardise the integrity of the genome and may increase 

mutation rates (Maklakov and Immler, 2016). Defense mechanisms of the 

genome against such mutagenic factors include DNA methylation, chromatin 

modifications and the production of small RNAs (sRNAs) including Piwi 

interacting (piRNAs) and microRNAs (miRNAs; Bartel, 2004; Klattenhof and 105	

Theurkauf, 2008; Siomi et al., 2011; Ernst et al., 2017). All three factors are 

known to be involved in mediating the possible effects of selfish genetic 

elements at the translational and post-translational levels. As a result, relevant 

epigenetic marks produced in protection of the germline genome may end up 
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in the mature gametes as relicts by chance rather than for adaptive reasons. 110	

At this stage, the non-adaptive hypothesis needs careful testing before we 

can exclude it with certainty.  

 

Paternal effects as an adaptive response to increase offspring fitness 

The transfer of information about the environmental conditions encountered 115	

by the parents to their offspring may be beneficial and provide an adaptive 

advantage to the offspring (Bonduriansky and Day, 2009; Turner, 2009). A 

mechanism that allows for such a transfer of information without modifying the 

genome may offer a flexible solution particularly in rapidly changing 

environments. A recent theoretical study described a positive feedback 120	

process where the parental phenotype favoured by environmental conditions 

gets progressively reinforced in the following generations through a learning 

mechanism (Xue and Leibler, 2016). Empirical evidence for such dynamics 

have been reported in C. elegans where small RNAs have been shown to be 

inherited for several generations without further additional stimulation with the 125	

help of RNA-dependent RNA polymerases (Rechavi et al., 2011; Ashe et al., 

2012; Gu et al., 2012; Rechavi et al., 2014). A recent study in C. elegans 

provided direct evidence for such a feedback loop determining the duration of 

transgenerational inheritance of small RNAs (Houri-Ze'evi et al., 2016). 

Similarly, the ability of prions to assume a self-templating fold mechanism 130	

(Harvey et al., 2018) suggests that these have the potential to maintain 

themselves in a self-regulating manner over many generations. Such 

genome-independent systems could be a way to memorise past conditions 

and transfer relevant information across generations for swift adjustments to 
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slow or rapid environmental changes despite the rigidity of the underlying 135	

genome.  

 

Paternal effects to mediate sexual conflict 

The inheritance of a paternal and a maternal genome creates a conflict 

between males and females over allele expression at heterozygous loci in the 140	

offspring (Arnqvist and Rowe, 2005). Epigenetic factors may further contribute 

to this conflict if they are inherited at an equal rate from both parents, but they 

may also offer a mechanism to resolve the conflict. Genomic imprinting is an 

epigenetic mechanism, which determines expression of an allele according to 

its parental origin (Reik and Walter, 2001). The three main theories proposed 145	

for the evolution of genomic imprinting are the kinship theory (Haig, 2000), the 

sexual antagonism theory (Day and Bonduriansky, 2004; Bonduriansky, 2007) 

and the maternal-offspring co-adaptation theory (Wolf and Hager, 2006; Wolf 

and Hager, 2009, all reviewed in Patten et al., 2014). The question at the 

heart of all three theories is the conflict between the parents over gene 150	

expression in their offspring at heterozygous loci. The aspect that varies 

between the theories is the nature of the involved parties (parent-offspring, 

male-female or all of them together etc.) and of the resolving mechanism.  

 

Similar to the hypothesis presented for sexual conflict, other genetic conflicts 155	

have been proposed as a possible explanation for sperm carrying RNAs 

(Holman and Price, 2014; Hosken and Hodgson, 2014). These authors 

suggested that RNAs mediate potential genomic conflicts not only between 

males and females but also between the diploid male and its haploid sperm, 
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and among the different sperm within an ejaculate. Given the shear variation 160	

of RNAs present within each sperm they possibly cover several of these 

functions.  

 

Paternal effects to control selfish genetic elements 

The genomic conflict arising between the genome and selfish genetic 165	

elements may provide another explanation for the evolution of 

transgenerational epigenetic mechanisms (Holman and Price, 2014). The 

transfer of defense mechanisms against the detrimental effects of stressful 

environments from the male germline to the zygote would allow the protection 

of the zygotic genome during the sensitive stages of early development. The 170	

findings of variation in small RNA profiles, methylation patterns and chromatin 

structure in response to environmental stressors in sperm and the resulting 

offspring appear to be in line with this idea. However, we still know relatively 

little about the association between transposable elements (TEs) and 

epigenetic marks and mechanisms. A recent study in Arabidopsis thaliana 175	

showed that changes in methylation patterns and increased levels of gene 

expression were directly associated with de novo insertions of TEs in the 

immediate vicinity of affected genes (Stuart et al., 2016). Whether similar 

associations exist in the male germline and/or in the zygote is currently not 

known. 180	

 

Epigenetic factors and RNAs in the sperm may also derive from segregation 

distorting alleles that involve the incapacitation/killing of sperm or zygotes 

carrying alternative alleles (Holman and Price, 2014). This suggestion is 
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purely hypothetical and needs careful testing. But if such a mechanism exists, 185	

it would potentially affect male fertility. An association between male fertility 

and certain RNAs has been shown in humans but the mechanisms involved 

are unknown (Jodar et al., 2012).  

 

The hypotheses outlined above for the evolution of genetic imprinting and the 190	

role of RNAs as signals among different units may apply to any epigenetic 

factor transmitted via sperm. Males can undoubtedly benefit from transmitting 

more than just a genome in their gametes, and the idea that these 

mechanisms are adaptive is enticing. Testing the non-adaptive alternative is 

therefore even more important and necessary. It will be exciting to examine 195	

the different hypotheses and understand more about the evolutionary 

dynamics involved. This should be increasingly possible with the steadily 

improving methods available in genomics, transcriptomics and proteomics. 

 

Which non-genetic components does a sperm transfer to the zygote? 200	

Beside the nuclear genome, sperm are known to contain a range of 

epigenetic elements, which are transferred into the zygote upon fertilisation, 

including chromatin modifications, RNAs and proteins (reviewed in Dadoune, 

2009; Carrell, 2012; Casas and Vavouri, 2014; Rando, 2016; Figure 1). Here 

below, I provide a brief overview of the currently known factors and present 205	

examples for the ways these factors might affect processes in the zygote and 

beyond. I am using the term “epigenetics” in a broad sense and follow 

Henikoff and Greally’s (2016) definition, where any cellular memory not 

encoded in the genetic code is included. Genome-carrying cell organelles 
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such as mitochondria are therefore not included even though these may be 210	

inherited through sperm in rare occasions in some organisms, such as insects 

(Wolff et al., 2012), mammals (Zhao et al., 2004) and birds (Alexander et al., 

2015) and regularly in others such as mussels (Sutherland et al., 1998; 

Zouros, 2000). Even with this relatively restricted definition of the term 

epigenetic, condition dependent transgenerational effects may be harder to 215	

identify than assumed, and some of the aspects that may need further 

investigation are described in the section Current challenges and future 

directions below.  

 

DNA methylation/acetylation 220	

DNA methylation is probably the most studied epigenetic mark and is 

assumed to play a major role in the transfer of non-genetic information across 

generations. DNA methylation in combination with histone modifications (see 

section below) plays a key role in regulating gene expression in the germ cells 

and thereby contributes to three key processes: (I) the specification and 225	

formation of primordial germ cells, (II) the genome-wide erasure and re-

establishment of germline-specific patterns in the embryo and sex-specific 

patterns during gametogenesis and (III) the establishment of sex-specific 

patterns typical for mature male and female gametes (reviewed in Allegrucci 

et al., 2005). Given their key role in governing gene expression throughout 230	

development, it is not surprising that paternal condition affects methylation 

patterns in the offspring. Fathers kept on a high fat diet in Sprague-Dawley 

rats for example sired daughters with impaired insulin secretion and glucose 

tolerance. Their female offspring exhibited altered expression in 642 
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pancreatic islet genes with some of the key genes being hypomethylated (Ng 235	

et al., 2010). More generally, environmental changes during early 

developmental stages seem to have a major impact on germline methylation 

patterns (see Faulk and Dolinoy, 2011 for review).  

 

The molecular mechanism is based on the binding of a methyl/acetyl group to 240	

a DNA molecule, which may affect the transcriptional activity of the underlying 

gene without changing the genetic code. The percentage of methylation 

inherited from the father through sperm varies markedly across taxa and may 

range from fully maternally inherited to largely paternally inherited patterns. In 

house mice Mus musculus (and other mammals), the methylation structure in 245	

the developing zygote is re-structured during early embryogenesis following 

the maternal template and paternal marks are mostly removed (see Daxinger 

and Whitelaw, 2012 for review). In contrast, in zebrafish Danio rerio, the 

paternal methylation pattern forms the template and the maternal methylation 

pattern is largely restructured according to the information coming from the 250	

father (Potok et al., 2013; Jiang et al., 2013). These taxonomic differences in 

methylation inheritance are currently not explained and possible evolutionary 

reasons need to be tested. 

 

RNA families 255	

Sperm contain many families of RNAs, which may be transferred into the 

zygote during fertilisation and may therefore affect processes involved during 

early embryogenesis (Dadoune, 2009). These RNA families include 

messenger RNAs (mRNA; Alcivar et al., 1989; Ostermeier et al., 2002; Yang 
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et al., 2009; Bonache et al., 2012), micro RNAs (miRNAs; e.g. Krawetz et al., 260	

2011), Piwi interacting RNAs (piRNAs; e.g. Krawetz et al., 2011), transfer 

RNA derived small RNAs (tRNAs; e.g. Peng et al., 2012) and a number of 

other to date un-specified RNA families. mRNAs are a large group of different 

molecules that are the direct result of gene transcription and are therefore 

also known as “coding” RNAs. The mRNA content in sperm is relatively low 265	

compared to any other cell type, and their origin (i.e. pre- versus postmeiotic) 

and role need further investigation.  

 

The three remaining families (i.e. miRNAs, piRNAs and tRNAs) belong to the 

group of “small non-coding” RNAs (sRNAs) as they are transcribed from non-270	

coding regions of the genome, and for many, their origin and function is still 

unknown. miRNAs are short (about 22-nucleotides) molecules that are 

involved in RNA silencing and regulation of gene expression at the 

transcriptional and post-transcriptional stages (Bartel, 2004). They may 

mediate the activity of selfish genetic elements by triggering small interfering 275	

RNAs (siRNAs) in a highly specialised and pathway specific manner (Creasey 

et al., 2014). Similarly, piRNAS (21-32 nucleotides) in the germline are 

involved in the silencing of selfish DNA elements and the maintenance of 

DNA integrity through the formation of RNA-protein complexes that act at the 

transcriptional and post-transcriptional levels (Klattenhof and Theurkauf, 280	

2008; Siomi et al., 2011; Ernst et al., 2017). However, the exact mechanisms 

and origins of piRNAs are currently elusive. tRNAs (sometimes also referred 

to as tsRNAs) may vary in length (from 20 nucleotides into the range of 

piRNAs) and have been assumed to be the result of transmitter RNA 
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degradation until they were clearly identified as a distinct group of small non-285	

coding RNAs (Lee et al., 2009). Observations in house mice M. musculus 

suggested that in testicular sperm, the tRNA content is low but increases with 

maturation through the fusion with epidydosomes (Sharma et al., 2016). The 

same study also reported that the function of these tRNAs is to repress genes 

associated with the selfish element MERVL active in preimplantation 290	

embryos. 

 

The total amount of RNA molecules transferred through sperm is vanishingly 

small compared to the RNAs present in the egg. Nevertheless, several 

families of RNAs have been reported to be involved in non-genetic inheritance 295	

of paternal conditions across generations. miRNAs and piRNAS were 

differentially expressed in the sperm of male house mice M. musculus 

exposed to traumatic stress during the juvenile life stage compared to sperm 

of control male mice (Gapp 2014). The injection of these differentially 

expressed RNAs into early zygotes lead to similar offspring phenotypes as 300	

those observed in the experiments using traumatised males as fathers. 

Furthermore, miRNAs were involved in the transmission of chronic stress 

responses experimentally evoked in adult male mice to their offspring 

(Rodgers et al., 2013). The precise role of tRNAs needs further investigation 

but they seem to affect gene expression during early embryo development 305	

(Sharma et al., 2016).  

 

Proteins 
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Sperm are composed of a wide range of proteins located on the sperm 

surface, in the acrosome (where present), in and around the nucleus and 310	

even in the flagellum. The sperm proteosome as a whole has been analysed 

with respect to human infertility and 20 proteins have been identified to be 

associated with fertility issues (Lefievre et al., 2003; Pixton et al., 2004; Rawe 

et al., 2008). A similar study in the house mouse M. musculus shortlisted 132 

proteins that may affect fertility, some of which seem to be evolutionarily 315	

preserved across taxonomic groups (Chu et al., 2006). These findings 

suggest a potential major role for proteins in transgenerational epigenetics. 

 

In fact, in non-rodent mammalian fertilisation, the centriole-centrosome is 

inherited through the sperm and acts as a template for all subsequent cell 320	

divisions from early embryogenesis into adulthood. Any malformations of this 

complex result in severe infertility due to disruption or insufficiency during 

mitotic divisions and may hence cause developmental problems anywhere 

from interrupting the first mitotic divisions to causing embryonic malformations 

(Schatten and Sun, 2013). The centriole-centrosome complex likely varies in 325	

its shape and therefore function also among fertile males, and these more 

subtle variations may contribute to the fitness and performance of the 

offspring in the next generation.  

 

In a recent review, Harvey et al. (2018) proposed that prions are ideal 330	

candidates for non-genetic transgenerational inheritance due to their 

conformational flexibility and their ability to transform into self-templating folds, 

which allows them to proliferate independently even across generations. 
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Prions are considerably more stable during meiotic processes compared to 

other epigenetic factors experiencing major re-structuring (Cox, 1965; Young 335	

and Cox, 1971). The independence and stability of prions may imply that 

protein-based transgenerational inheritance could be important but the idea 

needs careful testing. 

 

Histone modifications 340	

Although histone modifications could be regarded as part of the sperm 

proteome, I discuss them separately as they have received a lot of attention in 

the context of trans-generational epigenetics. Modifications of the histones are 

assumed to affect gene expression and therefore may play a key role in gene 

regulation (e.g. Kouzarides, 2007). Gene regulation is particularly important 345	

during the early stages of development and any marks inherited from the 

father may contribute to embryonic gene expression – with potential effects 

later on in life. In mammalian sperm, 90 (in humans) to 95% (in house mice) 

of histones are replaced by protamines during spermatogenesis, and the 

remaining histones may undergo post-translational modifications affecting 350	

gene expression at these loci (Luense et al., 2016). These post-translational 

modifications may regulate gene expression during spermatogenesis and 

during early embryo development (Brykczynska et al., 2010; Hammoud et al., 

2011; Erkek et al., 2013; Brunner et al., 2014). In human sperm, histone 

modifications appear to be particularly enriched around developmental loci. 355	

Dimethylated lysine 4 on histone H3 (H3K4me2) for example, is found at 

promoter loci, whereas H3K4me3 is found in large clusters of paternally 

expressed imprinted genes, miRNAs and HOX genes (Hammoud et al., 
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2009). These patterns also seem to hold for the zebrafish Danio rerio, where 

sperm retain the histones and lack protamines altogether, but chromatin 360	

markers such as permissive H3K4me3 with or without repressive H3K9me3 or 

H3K27me3 are associated with developmental loci (Lindeman et al., 2011). A 

study manipulating the dietary conditions in male house mice observed 

differential gene expression in the next generation and found a consistent 

decrease in H3K27me3 at the promoter of monoamine oxidase in sperm of 365	

low-protein diet males compared to control males (Carone et al., 2010).  

 

Current challenges and future directions 

The study of paternal epigenetic effects inherited across generations is still in 

its early days and many fundamental questions are currently unanswered. 370	

The many unfilled gaps and fundamental unknowns put limitations to our 

ability to summarise the relative importance, prevalence, and/or impact of 

each of the factors discussed. It may be worth identifying some of the key 

aspects that we should focus on in the near future.  

 375	

The term “sperm factor” may be somewhat misleading in being an 

oversimplification of what is clearly a varied set of highly complex factors. One 

of the questions is therefore: How are the different mechanisms linked? 

Understanding whether the different epigenetic components act 

independently, complementarily, additively, or interactively and how these 380	

interactions and the resulting effects may be context-dependent are some of 

the challenges we are currently facing. The interaction between some of the 

factors such as the tight linkage between DNA methylation and histone 
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modifications for the regulation of gene expression during proliferation and 

differentiation of the germline is relatively well understood. In contrast, other 385	

factors are still largely a black box (piRNAs), and many have not even been 

properly identified yet (other small RNAs). Carefully designed experiments 

combined with the latest –omics technology may be a valuable way to gain 

insights into what are clearly highly complex processes. 

 390	

Another currently open question is whether the non-genetic transfer of 

information in sperm is truly “non-genetic” or whether there is a causal 

connection between the non-genetic information and the underlying genome. 

Non-genetic factors may fall into one of three possible categories: (I) 

independent of sequence variation, (II) partially dependent on sequence 395	

variation, and (III) completely dependent on sequence variation (based on 

epiallelic variation as proposed by Richards, 2006). An additional aspect that 

needs to be considered is whether the transfer of information is based (A) 

purely on transmitted genes or (B) on a combination of transmitted genes and 

non-genetic material. In case III, all the observed variation should be 400	

explained by focusing exclusively on sequence variation and the distinction 

between scenario A and B is not necessary. However, in cases I and II, 

sequence variation will not explain everything as non-genetic material may be 

generated independently and add variation through non-genetic mutations 

occurring between transcription events. Performing experimental 405	

manipulations of paternally experienced environmental conditions in 

combination with long-read DNA sequencing, RNA sequencing of different 
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RNA families, ChIP sequencing and bisulfite sequencing is not an easy but a 

promising way forward to answer these questions. 

 410	

The importance of the relative timing and duration of changes in 

environmental conditions experienced by a male to affect the following 

generation(s) is still poorly understood. In mammals (and probably most other 

taxa), early embryo development is a particularly sensitive period and 

methylation patterns and histone modifications are strongly affected by 415	

environmental conditions during this time (reviewed in Faulk and Dolinoy, 

2011). However, effects across generations have also been shown in studies 

where males were exposed to stressful environments as juveniles before 

sexual maturity (e.g. Gapp et al., 2014), during adulthood (e.g. Carone et al., 

2010) or both (e.g. Rodgers et al., 2013). It would be interesting to 420	

understand, which epigenetic factors are mostly affected by environmental 

conditions in the male germline during each of these life stages and how 

strong the observed transgenerational effects are relative to each other.  

 

Of particular relevance for the fields of ecology and evolution is the question 425	

about the stability of epigenetic alterations. While some epigenetic marks are  

stable and conserved even across taxa (Provataris et al., 2018 ), others are 

seemingly more apt to change. Having said that, even sRNAs can be 

transferred across many generations without further stimulation in a self-

regulating process (Rechavi et al., 2014) suggesting that such systems may 430	

provide a reliable way to memorise environmental conditions. Understanding 
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the flexibility and stability of epigenetic mechanisms is important to fully 

assess their relative contribution to inheritance. 

 

Finally, ejaculates generally consist of more than just sperm, and we know 435	

that the content of seminal fluids may have severe effects on female fitness 

(Chapman et al., 1995; Wolfner, 2002), and also on their offspring (Chapman 

et al., 2001; Crean et al., 2014; Crean et al., 2016). Controlling for such 

effects and disentangling factors carried by sperm from factors in the seminal 

fluid will be imperative when studying the various mechanisms.   440	

 

In summary, non-genetic factors transferred through the sperm into the zygote 

are very likely to affect the resulting generation(s) and this in itself is a very 

important insight. We now need to understand, which mechanisms contribute 

to this transfer of information and how and what the true purpose of non-445	

genetic information transferred in sperm across generations is. With a great 

range of novel tools becoming available and increasingly affordable we should 

be able to address these important questions. 
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Figure	1:	Illustration	of	non-genetic	components	transferred	via	sperm	from	the	

father	to	the	offspring	and	their	putative	effects	in	the	offspring.	The	description	

of	the	effects	is	very	general	as	many	of	them	are	currently	still	poorly	755	

understood.	
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