865 research outputs found

    Next steps: learning a disentangled gait representation for versatile quadruped locomotion

    Get PDF
    Quadruped locomotion is rapidly maturing to a degree where robots now routinely traverse a variety of unstructured terrains. However, while gaits can be varied typically by selecting from a range of pre-computed styles, current planners are unable to vary key gait parameters continuously while the robot is in motion. The synthesis, on-the-fly, of gaits with unexpected operational characteristics or even the blending of dynamic manoeuvres lies beyond the capabilities of the current state-of-the-art. In this work we address this limitation by learning a latent space capturing the key stance phases of a particular gait, via a generative model trained on a single trot style. This encourages disentanglement such that application of a drive signal to a single dimension of the latent state induces holistic plans synthesising a continuous variety of trot styles. In fact properties of this drive signal map directly to gait parameters such as cadence, footstep height and full stance duration. The use of a generative model facilitates the detection and mitigation of disturbances to provide a versatile and robust planning framework. We evaluate our approach on a real ANYmal quadruped robot and demonstrate that our method achieves a continuous blend of dynamic trot styles whilst being robust and reactive to external perturbations

    VAE-Loco: versatile quadruped locomotion by learning a disentangled gait representation

    Get PDF
    Quadruped locomotion is rapidly maturing to a degree where robots are able to realize highly dynamic maneuvers. However, current planners are unable to vary key gait parameters of the in-swing feet midair. In this article, we address this limitation and show that it is pivotal in increasing controller robustness by learning a latent space capturing the key stance phases constituting a particular gait. This is achieved via a generative model trained on a single trot style, which encourages disentanglement such that application of a drive signal to a single dimension of the latent state induces holistic plans synthesizing a continuous variety of trot styles. We demonstrate that specific properties of the drive signal map directly to gait parameters, such as cadence, footstep height, and full-stance duration. Due to the nature of our approach, these synthesized gaits are continuously variable online during robot operation. The use of a generative model facilitates the detection and mitigation of disturbances to provide a versatile and robust planning framework. We evaluate our approach on two versions of the real ANYmal quadruped robots and demonstrate that our method achieves a continuous blend of dynamic trot styles while being robust and reactive to external perturbations

    Obligations in the Shade: The Application of Fiduciary Directors’ Duties to Shadow Directors

    Get PDF
    This paper argues that shadow directors, as defined in English law, ought to owe the full range of directors’ duties, both fiduciary and non-fiduciary, enacted in the Companies Act 2006 (CA 2006), ss 171-177, to the relevant company under their influence. Following the enactment of the recent Small Business, Enterprise and Employment Act (SBEEA) 2015, these general duties are likely to apply to shadow directors, although there is still a case to be made as to why shadow directors should owe fiduciary duties to the relevant company. It is argued here that such a relationship is fiduciary in nature, but the current approach deployed in the English courts, based upon the application of Finn’s originally formulated ‘undertaking’ test alone, is inadequate. Given these inadequacies, it is proposed that the Canadian ‘power and discretion’ test be deployed alongside the ‘undertaking’ test, in order to provide a far more comprehensive justification for the application of fiduciary obligations to shadow directors. This position is supported by establishing a theoretical basis for the ‘power and discretion’ test, via Paul Miller’s ‘fiduciary powers theory’, as well as considering the application of such a test to shadow directors

    Integrated Clinical-Molecular Classification of Colorectal Liver Metastases: A Biomarker Analysis of the Phase 3 New EPOC Randomized Clinical Trial

    Get PDF
    IMPORTANCE: Personalized treatment approaches for patients with oligometastatic colorectal liver metastases are critically needed. We previously defined 3 biologically distinct molecular subtypes of colorectal liver metastases: (1) canonical, (2) immune, and (3) stromal. OBJECTIVE: To independently validate these molecular subtypes in the phase 3 New EPOC randomized clinical trial. DESIGN, SETTING, AND PARTICIPANTS: This retrospective secondary analysis of the phase 3 New EPOC randomized clinical trial included a bi-institutional discovery cohort and multi-institutional validation cohort. The discovery cohort comprised patients who underwent hepatic resection for limited colorectal liver metastases (98% received perioperative chemotherapy) from May 31, 1994, to August 14, 2012. The validation cohort comprised patients who underwent hepatic resection for liver metastases with perioperative chemotherapy (fluorouracil, oxaliplatin, and irinotecan based) with or without cetuximab from February 26, 2007, to November 1, 2012. Data were analyzed from January 18 to December 10, 2021. INTERVENTIONS: Resected metastases underwent RNA sequencing and microRNA (miRNA) profiling in the discovery cohort and messenger RNA and miRNA profiling with microarray in the validation cohort. MAIN OUTCOMES AND MEASURES: A 31-feature (24 messenger RNAs and 7 miRNAs) neural network classifier was trained to predict molecular subtypes in the discovery cohort and applied to the validation cohort. Integrated clinical-molecular risk groups were designated based on molecular subtypes and the clinical risk score. The unique biological phenotype of each molecular subtype was validated using gene set enrichment analyses and immune deconvolution. The primary clinical end points were progression-free survival (PFS) and overall survival (OS). RESULTS: A total of 240 patients were included (mean [range] age, 63.0 [56.3-68.0] years; 151 [63%] male), with 93 in the discovery cohort and 147 in the validation cohort. In the validation cohort, 73 (50%), 28 (19%), and 46 (31%) patients were classified as having canonical, immune, and stromal metastases, respectively. The biological phenotype of each subtype was concordant with the discovery cohort. The immune subtype (best prognosis) demonstrated 5-year PFS of 43% (95% CI, 25%-60%; hazard ratio [HR], 0.37; 95% CI, 0.20-0.68) and OS of 63% (95% CI, 40%-79%; HR, 0.38; 95% CI, 0.17-0.86), which was statistically significantly higher than the canonical subtype (worst prognosis) at 14% (95% CI, 7%-23%) and 43% (95% CI, 32%-55%), respectively. Adding molecular subtypes to the clinical risk score improved prediction (the Gönen and Heller K for discrimination) from 0.55 (95% CI, 0.49-0.61) to 0.62 (95% CI, 0.57-0.67) for PFS and 0.59 (95% CI, 0.52-0.66) to 0.63 (95% CI, 0.56-0.70) for OS. The low-risk integrated group demonstrated 5-year PFS of 44% (95% CI, 20%-66%; HR, 0.38; 95% CI, 0.19-0.76) and OS of 78% (95% CI, 44%-93%; HR, 0.26; 95% CI, 0.08-0.84), superior to the high-risk group at 16% (95% CI, 10%-24%) and 43% (95% CI, 32%-52%), respectively. CONCLUSIONS AND RELEVANCE: In this prognostic study, biologically derived colorectal liver metastasis molecular subtypes and integrated clinical-molecular risk groups were highly prognostic. This novel molecular classification warrants further study as a possible predictive biomarker for personalized systemic treatment for colorectal liver metastases. TRIAL REGISTRATION: isrctn.org Identifier: ISRCTN22944367

    Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe

    Get PDF
    A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (IS⊙IS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ~0.3 particles (cm² sr s MeV)⁻¹, and was undetectable above background levels at energies above 10 MeV or in particle detectors at 1 au. It was strongly anisotropic, with intensities flowing outward from the Sun up to 30 times greater than those flowing inward persisting throughout the event. Temporal association between particle increases and small brightness surges in the extreme-ultraviolet observed by the Solar TErrestrial RElations Observatory, which were also accompanied by type III radio emission seen by the Electromagnetic Fields Investigation on PSP, indicates that the source of this event was an active region nearly 80° east of the nominal PSP magnetic footpoint. This suggests that the field lines expanded over a wide longitudinal range between the active region in the photosphere and the corona

    Development of neural mechanisms of conflict and error processing during childhood: implications for self-regulation.

    Get PDF
    Regulation of thoughts and behavior requires attention, particularly when there is conflict between alternative responses or when errors are to be prevented or corrected. Conflict monitoring and error processing are functions of the executive attention network, a neurocognitive system that greatly matures during childhood. In this study, we examined the development of brain mechanisms underlying conflict and error processing with event-related potentials (ERPs), and explored the relationship between brain function and individual differences in the ability to self-regulate behavior. Three groups of children aged 4–6, 7–9, and 10–13 years, and a group of adults performed a child-friendly version of the flanker task while ERPs were registered. Marked developmental changes were observed in both conflict processing and brain reactions to errors. After controlling by age, higher self-regulation skills are associated with smaller amplitude of the conflict effect but greater amplitude of the error-related negativity. Additionally, we found that electrophysiological measures of conflict and error monitoring predict individual differences in impulsivity and the capacity to delay gratification. These findings inform of brain mechanisms underlying the development of cognitive control and self-regulation.Research presented in this article was supported by a grant from the Spanish Ministry of Science and Innovation (ref. PSI2011.27746) to M. Rosario Rueda and a pre-doctoral FPU fellowship from the Spanish Ministry of Science and Innovation awarded to the fist author. The research presented in this paper was part of the doctoral dissertation of the first author

    Jovian electrons in the inner heliosphere: Opportunities for Multi-spacecraft Observations and Modeling

    Full text link
    In this paper we explore the idea of using multi-spacecraft observations of Jovian electrons to measure the 3D distribution of these particles in the inner heliosphere. We present simulations of Jovian electron intensities along selected spacecraft trajectories for 2021 and compare these, admittedly qualitatively, to these measurements. Using the data-model comparison we emphasize how such a study can be used to constrain the transport parameters in the inner heliosphere, and how this can lead to additional insight into energetic particle transport. Model results are also shown along the expected trajectories of selected spacecraft, including the off-ecliptic phase of the Solar Orbiter mission from 2025 onward. Lastly, we revisit the use of historical data and discuss upcoming missions that may contribute to Jovian electron measurements.Comment: Accepted for publication in Ap
    corecore