117 research outputs found

    Determination Methods Of Defrosted Protein-vegetable Mixtures Parameters Development

    Get PDF
    The aim of the work is to develop methods of investigating the influence of semolina and extruded semolina on quality and quantity parameters of mixtures with milk-protein concentrates in a cycle of freezing-defrost that allows to substantiate resource-saving in semi-products manufacturing.Obtained results of changes of the quality of protein-vegetable mixtures after the effect of negative temperatures confirm cryo-protective properties of carbohydrates of products of wheat processing.There were studied methods of extracting proteins of whey for getting albumin mass and using in the composition of milk-protein concentrates. It was established, that adding collagen-containing ingredients in amount 0,4 % for intensifying thermal coagulation of whey proteins decreases the duration of precipitation to (55±2) and (40±2) min respectively depending on a type of raw material processing. There were studied both native whey and protein concentrate, obtained by the method of ultra-filtration with mass share of dry substances (16±2) %.The method of thermal analysis determined a cryoscopic temperature of sour-milk fatless cheese and also albumin mass, obtained using «Collagen pro 4402». The calculation method, based on cryoscopic temperature indices determined an amount of moisture, frozen out in milk-whey mixtures with wheat processing products. The presented information is enough for estimating traditional modes of freezing milk-protein concentrates objectively.The obtained results of the studies indicate the effectiveness of the offered methods for determining parameters of protein-vegetable mixtures after defrosting. Measurements of quality parameters may be used for correcting mass losses of concentrates effectively

    Safety and immunogenicity of rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine against SARS-CoV-2 in healthy adolescents: an open-label, non-randomized, multicenter, phase 1/2, dose-escalation study

    Get PDF
    To protect young individuals against SARS-CoV-2 infection, we conducted an open-label, prospective, non-randomised dose-escalation Phase 1/2 clinical trial to evaluate the immunogenicity and safety of the prime-boost “Sputnik V” vaccine administered at 1/10 and 1/5 doses to adolescents aged 12–17 years. The study began with the vaccination of the older cohort (15-to-17-year-old participants) with the lower (1/10) dose of vaccine and then expanded to the whole group (12-to-17-year-old participants). Next, 1/5 dose was used according to the same scheme. Both doses were well tolerated by all age groups. No serious or severe adverse events were detected. Most of the solicited adverse reactions were mild. No significant differences in total frequencies of adverse events were registered between low and high doses in age-pooled groups (69.6% versus 66.7%). In contrast, the 1/5 dose induced significantly higher humoral and T cell-mediated immune responses than the 1/10 dose. The 1/5 vaccine dose elicited higher antigen-binding (both S and RBD-specific) as well as virus-neutralising antibody titres at the maximum of response (day 42), also resulting in a statistically significant difference at a distanced timepoint (day 180) compared to the 1/10 vaccine dose. Higher dose resulted in increased cross-neutralization of Delta and Omicron variants.;Clinical Trial RegistrationClinicalTrials.gov, NCT04954092, LP-007632

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the W gamma Production Cross Section in Proton-Proton Collisions at root s=13 TeV and Constraints on Effective Field Theory Coefficients

    Get PDF
    A fiducial cross section for W gamma production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb(-1) of data collected using the CMS detector at the LHC. The W -> e nu and mu nu decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.Peer reviewe

    Performance of the CMS muon trigger system in proton-proton collisions at √s = 13 TeV

    Get PDF
    The muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015-2018) the LHC achieved instantaneous luminosities as high as 2 × 10 cm s while delivering proton-proton collisions at √s = 13 TeV. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40 MHz to about 1 kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred GeV

    Search for long-lived particles decaying to jets with displaced vertices in proton-proton collisions at root s=13 Te V

    Get PDF
    A search is presented for long-lived particles produced in pairs in proton-proton collisions at the LHC operating at a center-of-mass energy of 13 TeV. The data were collected with the CMS detector during the period from 2015 through 2018, and correspond to a total integrated luminosity of 140 fb(-1). This search targets pairs of long-lived particles with mean proper decay lengths between 0.1 and 100 mm, each of which decays into at least two quarks that hadronize to jets, resulting in a final state with two displaced vertices. No significant excess of events with two displaced vertices is observed. In the context of R-parity violating supersymmetry models, the pair production of long-lived neutralinos, gluinos, and top squarks is excluded at 95% confidence level for cross sections larger than 0.08 fb, masses between 800 and 3000 GeV, and mean proper decay lengths between 1 and 25 mm.Peer reviewe

    Search for top squark production in fully hadronic final states in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb(-1). The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeVare established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.Peer reviewe

    The Analisis of Interaction of Monosaccharides with Aminoacids in Food Raw by Quantum-chemical Methods

    Full text link
    The object of research is the products of hydrolysis of the polysaccharide inulin (glucose, fructose) of plant raw materials used for the production of food products for health-improving and prophylactic purposes. The search for optimal conditions for the transformation of polysaccharides in the processes of hydrolytic cleavage into fructose-oligosaccharide products requires a thorough study of both the chemical composition of the raw material and the interaction between the components. This affects both the stability of the initial, intermediate and final products of the hydrolysis of the polysaccharide, and its release from plant materials and the further course of its fragmentation. Literature data indicate that the chemical composition of carbohydrate-containing plant materials, in particular the content of mineral components, has not yet been fully studied and requires additional research and refinement. After all, macro- and microelements in its composition are not only important nutrients, but can also take an active part in the transformation of organic components through complexation at intermediate stages of these processes. In addition, the question of the possible interaction of organic compounds in the composition of food raw materials, in particular biopolymers, which make up a significant part of the mass – carbohydrates and protein compounds, also requires attention. Such interaction under normal conditions has practically not been studied, but it can affect the course of technological processes of processing. The study of intermolecular interactions occurring in complex natural systems is often complicated either by the absence of direct (selective) physical and physicochemical research methods, or by the multicomponent chemical composition of the system, or by the complexity of the objects (substances) of the study themselves. This is especially true for natural substances of a polymeric nature – proteins, peptides, poly- and oligosaccharides. Therefore, the work paid special attention to the study of the interaction of these components. The spatial structure of inulin molecules, oligosaccharides and elementary units of these polymers has been investigated using quantum chemical modeling. The distribution of effective charges on carbohydrate atoms is calculated; it directly affects their reactivity. And also quantum-chemical models of the interaction of protein substances of plant materials with carbohydrates in vacuum and in aqueous solutions are created, depending on their dilution

    The Analisis of Interaction of Monosaccharides with Aminoacids in Food Raw by Quantum-chemical Methods

    Get PDF
    The object of research is the products of hydrolysis of the polysaccharide inulin (glucose, fructose) of plant raw materials used for the production of food products for health-improving and prophylactic purposes. The search for optimal conditions for the transformation of polysaccharides in the processes of hydrolytic cleavage into fructose-oligosaccharide products requires a thorough study of both the chemical composition of the raw material and the interaction between the components. This affects both the stability of the initial, intermediate and final products of the hydrolysis of the polysaccharide, and its release from plant materials and the further course of its fragmentation. Literature data indicate that the chemical composition of carbohydrate-containing plant materials, in particular the content of mineral components, has not yet been fully studied and requires additional research and refinement. After all, macro- and microelements in its composition are not only important nutrients, but can also take an active part in the transformation of organic components through complexation at intermediate stages of these processes. In addition, the question of the possible interaction of organic compounds in the composition of food raw materials, in particular biopolymers, which make up a significant part of the mass – carbohydrates and protein compounds, also requires attention. Such interaction under normal conditions has practically not been studied, but it can affect the course of technological processes of processing. The study of intermolecular interactions occurring in complex natural systems is often complicated either by the absence of direct (selective) physical and physicochemical research methods, or by the multicomponent chemical composition of the system, or by the complexity of the objects (substances) of the study themselves. This is especially true for natural substances of a polymeric nature – proteins, peptides, poly- and oligosaccharides. Therefore, the work paid special attention to the study of the interaction of these components. The spatial structure of inulin molecules, oligosaccharides and elementary units of these polymers has been investigated using quantum chemical modeling. The distribution of effective charges on carbohydrate atoms is calculated; it directly affects their reactivity. And also quantum-chemical models of the interaction of protein substances of plant materials with carbohydrates in vacuum and in aqueous solutions are created, depending on their dilution
    corecore