194 research outputs found

    Residual stress determination by neutron diffraction in powder bed fusion-built Alloy 718: Influence of process parameters and post-treatment

    Get PDF
    Alloy 718 is a nickel-based superalloy that is widely used as a structural material for high-temperature applications. One concern that arises when Alloy 718 is manufactured using powder bed fusion (PBF) is that residual stresses appear due to the high thermal gradients. These residual stresses can be detrimental as they can degrade mechanical properties and distort components. In this work, residual stresses in PBF built Alloy 718, using both electron and laser energy sources, were measured by neutron diffraction. The effects of process parameters and thermal post-treatments were studied. The results show that thermal post-treatments effectively reduce the residual stresses present in the material. Moreover, the material built with laser based PBF showed a higher residual stress compared to the material built with electron-beam based PBF. The scanning strategy with the lower amount of residual stresses in case of laser based PBF was the chessboard strategy compared to the bi-directional raster strategy. In addition, the influence of measured and calculated lattice spacing (d0) on the evaluated residual stresses was investigated

    New prediction of extragalactic GeV gamma-ray emission from radio lobes of young AGN jets

    Full text link
    We present a new prediction of GeV Îł\gamma-ray emission from radio lobes of young AGN jets. In the previous work of Kino et al. (2007), MeV Îł\gamma-ray bremsstrahlung emission was predicted from young cocoons/radio-lobes in the regime of no coolings. In this study, we include cooling effects of bremsstrahlung emission and adiabatic loss. With the initial conditions determined by observed young radio lobes, we solve a set of equations describing the expanding lobe evolution. Then we find that the lobes initially have electron temperature of ∌\simGeV, and they cool down to ∌\simMeV by the adiabatic loss. Correspondingly, the lobes initially yield bright bremsstrahlung luminosity in ∌\simGeV range and they fade out. We estimate these Îł\gamma-ray emissions and show that nearby young radio lobes could be detected with Fermi Gamma-ray Space Telescope.Comment: 5 pages, 3 figures, MNRAS Letters, accepte

    Observational Properties of Jets in Active Galactic Nuclei

    Full text link
    Parsec scale jet properties are shortly presented and discussed. Observational data are used to derive constraints on the jet velocity and orientation, the presence of velocity structures, and the connection between the pc and kpc scale. Two peculiar sources with limb-brightened jets: 1144+35 and Mkn 501 are discussed in detail.Comment: 13 pages with 7 figures. To appear in "Virtual Astrophysical Jets" APSS, Kluwer Academic Publisher - Massaglia, Bodo, Rossi eds - in pres

    AGN and starbursts at high redshift: High resolution EVN radio observations of the Hubble Deep Field

    Get PDF
    We present deep, wide-field European VLBI Network (EVN) 1.6 GHz observations of the Hubble Deep Field (HDF) region with a resolution of 0.025 arcseconds. Above the 210 microJy/beam (5sigma) detection level, the EVN clearly detects two radio sources in a field that encompasses the HDF and part of the Hubble Flanking Fields (HFF). The sources detected are: VLA J123644+621133 (a z=1.013, low-luminosity FR-I radio source located within the HDF itself) and VLA J123642+621331 (a dust enshrouded, optically faint, z=4.424 starburst system). A third radio source, J123646+621404, is detected at the 4sigma level. The VLBI detections of all three sources suggest that most of the radio emission of these particular sources (including the dusty starburst) is generated by an embedded AGN.Comment: 4 pages, 1 figure; Accepted by Astron. & Astrophys Letters ... See http://www.nfra.nl/~mag/hdf_evn.htm

    Atomic hydrogen in the one-sided "compact double" radio galaxy 2050+364

    Get PDF
    European VLBI Network spectral imaging of the "compact double" radio source 2050+364 in the UHF band at 1049 MHz has resolved the HI absorbing region, and has shown a faint continuum component to the North (N), in addition to the well-known East-West double (E, W). Re-examination of VLBI continuum images at multiple frequencies suggests that 2050+364 may well be a one-sided core-jet source, which appears as a double over a limited frequency range. One of the dominant features, W, would then be the innermost visible portion of the jet, and could be at or adjacent to the canonical radio core. The other, E, is probably related to shocks at a sudden bend of the jet, towards extended steep-spectrum region N. A remarkably deep and narrow HI absorption line component extends over the entire projected extent of 2050+364. It coincides in velocity with the [OIII] optical doublet lines to within 10 km/s. This HI absorption could arise in the atomic cores of NLR clouds, and the motion in the NLR is then remarkably coherent both along the line-of-sight and across a projected distance of > 300 pc on the plane of the sky. Broader, shallower HI absorption at lower velocities covers only the plausible core area W. This absorption could be due to gas which is either being entrained by the inner jet or is flowing out from the accretion region; it could be related to the BLR.Comment: 10 pages, 7 figures. Accepted in A&

    Simultaneous radio-interferometric and high-energy TeV observations of the gamma-ray blazar Mkn 421

    Full text link
    The TeV-emitting BL Lac object Mkn 421 was observed with very long baseline interferometry (VLBI) at three closely-spaced epochs one-month apart in March-April 1998. The source was also monitored at very-high gamma-ray energies (TeV measurements) during the same period in an attempt to search for correlations between TeV variability and the evolution of the radio morphology on parsec scales. While the VLBI maps show no temporal changes in the Mkn 421 VLBI jet, there is strong evidence of complex variability in both the total and polarized fluxes of the VLBI core of Mkn 421 and in its spectrum over the two-month span of our data. The high-energy measurements indicate that the overall TeV activity of the source was rising during this period, with a gamma-ray flare detected just three days prior to our second VLBI observing run. Although no firm correlation can be established, our data suggest that the two phenomena (TeV activity and VLBI core variability) are connected, with the VLBI core at 22 GHz being the self-absorbed radio counterpart of synchrotron self-Compton (SSC) emission at high energies. Based on the size of the VLBI core, we could derive an upper limit of 0.1 pc (3 x 10**17 cm) for the projected size of the SSC zone. This determination is the first model-free estimate of the size of the gamma-ray emitting region in a blazar.Comment: 12 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    LOFAR tied-array imaging and spectroscopy of solar S bursts

    Get PDF
    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2−8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission

    LOFAR Sparse Image Reconstruction

    Get PDF
    Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework Methods. We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data Results. We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SKAComment: Published in A&A, 19 pages, 9 figure

    Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array

    Get PDF
    When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.Comment: Submitted to Nuclear Instruments and Methods in Physics Research Section

    Imaging Jupiter's radiation belts down to 127 MHz with LOFAR

    Get PDF
    Context. Observing Jupiter's synchrotron emission from the Earth remains today the sole method to scrutinize the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet (because in-situ particle data are limited in the inner magnetosphere). Aims. We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV) which map a broad region of Jupiter's inner magnetosphere. Methods (see article for complete abstract) Results. The first resolved images of Jupiter's radiation belts at 127-172 MHz are obtained along with total integrated flux densities. They are compared with previous observations at higher frequencies and show a larger extent of the synchrotron emission source (>=4 RJR_J). The asymmetry and the dynamic of east-west emission peaks are measured and the presence of a hot spot at lambda_III=230 {\deg} ±\pm 25 {\deg}. Spectral flux density measurements are on the low side of previous (unresolved) ones, suggesting a low-frequency turnover and/or time variations of the emission spectrum. Conclusions. LOFAR is a powerful and flexible planetary imager. The observations at 127 MHz depict an extended emission up to ~4-5 planetary radii. The similarities with high frequency results reinforce the conclusion that: i) the magnetic field morphology primarily shapes the brightness distribution of the emission and ii) the radiating electrons are likely radially and latitudinally distributed inside about 2 RJR_J. Nonetheless, the larger extent of the brightness combined with the overall lower flux density, yields new information on Jupiter's electron distribution, that may shed light on the origin and mode of transport of these particles.Comment: 10 pages, 12 figures, accepted for publication in A&A (27/11/2015) - abstract edited because of limited character
    • 

    corecore