8 research outputs found

    Oral microbiome and peri-implant diseases: where are we now?

    No full text
    Rafal Pokrowiecki,1 Agnieszka Mielczarek,2 Tomasz Zareba,3 Stefan Tyski3,4 1Department of Head and Neck Surgery-Maxillofacial Surgery, Otolaryngology and Ophthalmology, Prof Stanislaw Popowski Voivoid Children Hospital, Olsztyn, 2Department of Conservative Dentistry, Medical University of Warsaw, 3Department of Antibiotics and Microbiology, National Medicines Institute, 4Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland Abstract: Peri-implant infective diseases (PIIDs) in oral implantology are commonly known as peri-implant mucositis (PIM) and periimplantitis (PI). While PIM is restricted to the peri-implant mucosa and is reversible, PI also affects implant-supporting bone and, therefore, is very difficult to eradicate. PIIDs in clinical outcome may resemble gingivitis and periodontitis, as they share similar risk factors. However, recent study in the field of proteomics and other molecular studies indicate that PIIDs exhibit significant differences when compared to periodontal diseases. This review aims to elucidate the current knowledge of PIIDs, their etiopathology and diversified microbiology as well as the role of molecular studies, which may be a key to personalized diagnostic and treatment protocols of peri-implant infections in the near future. Keywords: dental plaque, infection, titanium, microbiome, periimplantiti

    Recent trends in surface modification of the titanium biomaterials used for endoosseus dental implants

    No full text
    Celem pracy by艂a charakterystyka wsp贸艂czesnych pogl膮d贸w na zagadnienie warstwy wierzchniej i jej roli w procesie osteointegracji wszczep贸w stomatologicznych. Przedstawiono parametry powierzchni, kt贸re bezpo艣rednio wp艂ywaj膮 na inicjacj臋 procesu integracji implantu oraz jego p贸藕niejsze funkcjonowanie w organizmie. Szczeg贸ln膮 uwag臋 po艣wi臋cono zagadnieniu struktury powierzchni implant贸w dentystycznych oraz metodom modyfikacji umo偶liwiaj膮cym funkcjonalizacj臋 powierzchni z wykorzystaniem biomoleku艂. Wsp贸艂czesne kierunki in偶ynierii powierzchni skupiaj膮 si臋 na zwi臋kszeniu biozgodno艣ci materia艂贸w metalicznych i intensyfikacji proces贸w osteointegracji w oparciu o zasady biomimetyki. Liczne badania in vitro, in vivo oraz wst臋pne badania kliniczne wskazuj膮, 偶e uzyskanie nanotopografii zapewnia szybsz膮 osteointegracj臋 implant贸w dentystycznych w por贸wnaniu ze standardowymi wszczepami o powierzchni mikrostrukturalnej. Zastosowanie biomoleku艂 takich jak: kolagen, sekwencje peptydowe lub czynniki wzrostu przyspieszaj膮 procesy wgajania si臋 implant贸w, co zosta艂o r贸wnie偶 potwierdzone w badaniach in vitro oraz in vivo. W pracy poruszony r贸wnie偶 zosta艂 problem biofilmu bakteryjnego, kt贸ry jest szczeg贸lnie zauwa偶alny w implantologii stomatologicznej. Zjawisko kolonizacji powierzchni abiotycznych przez mikroorganizmy jest szczeg贸lnym problemem implantologii stomatologicznej. Ocenia si臋, 偶e powstaj膮cy na powierzchni implantu biofilm bakteryjny jest jedn膮 z najcz臋stszych przyczyn utraty wszczepu. Dlatego te偶 obserwuje si臋 d膮偶enia do opracowania nowych metod walki z zaka偶eniami oko艂owszczepowymi, w艣r贸d kt贸rych szczeg贸ln膮 uwag臋 po艣wi臋ca si臋 odpowiedniej modyfikacji warstwy wierzchniej. Obecnie uwa偶a si臋 wi臋c, 偶e opr贸cz osi膮gni臋cia dobrej osteointegracji, biomateria艂y powinny wykazywa膰 w艂a艣ciwo艣ci umo偶liwiaj膮ce zahamowanie adhezji bakterii, a tym samym formowania biofilmu, kt贸ry mo偶e by膰 przyczyn膮 utraty implantu.The aim of this work is to present modern directions in the field of surface layer and its role in the process of dental implants osseointegration. The subject of analysis were parameters of the surface that directly initiate process of integraton of the implant with the tissue and its further functioning in the body. The thorough attention was paid to the micro- and nanostructure of dental implant surface and the methods of its modification using biomolecules in order to make the implant functional. Another subject of the study was bacterial biofilm formation, which is particularly noticeable and dangerous in dental implantology. Having read the literature about modifications of titanium biomaterials surface, it can be concluded that modern trends in surface engineering focus on maximizing the biocompatibility of implants and their osseointegration on the basis of biomimetics. Numerous in vitro, in vivo tests and clinical research suggest that using nano-topographic materials results in faster osseointegration of dental implants in comparison with standard microstructure implants. Furthermore, introducing such biomolecules like collagen, peptide sequences or growth factors accelerate the implant healing process, which has been proven by in vitro and in vivo tests. The long-term implant functionality might also depend on using additional agents which prevent bacterial adhesion and subsequent formation of biofilm, leading to the implant loss

    In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery

    No full text
    Rafa艂 Pokrowiecki,1,2 Tomasz Zar臋ba,3 Barbara Szaraniec,4 Krzysztof Pa艂ka,5 Agnieszka Mielczarek,6 El偶bieta Menaszek,7 Stefan Tyski3,8 1Center for Cranio-Maxillo-Facial Surgery, Voivodeship Children’s Hospital, Olsztyn, 2Department of Oral Surgery, Jagiellonian Medical University, Kraków, 3Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, 4Faculty of Material Science and Ceramics, AGH University of Science and Technology, Kraków, 5Department of Materials Engineering, Lublin University of Technology, Lublin, 6Department of Conservative Dentistry, Medical University of Warsaw, Warsaw, 7Department of Cytobiology, Collegium Medicum, Jagiellonian University, Kraków, 8Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland Abstract: The addition of an antibacterial agent to dental implants may provide the opportunity to decrease the percentage of implant failures due to peri-implantitis. For this purpose, in this study, the potential efficacy of nanosilver-doped titanium biomaterials was determined. Titanium disks were incorporated with silver nanoparticles over different time periods by Tollens reaction, which is considered to be an eco-friendly, cheap, and easy-to-perform method. The surface roughness, wettability, and silver release profile of each disc were measured. In addition, the antibacterial activity was also evaluated by using disk diffusion tests for bacteria frequently isolated from the peri-implant biofilm: Streptococcus mutans, Streptococcus mitis, Streptococcus oralis, Streptococcus sanguis, Porphyromonas gingivalis, Staphylococcus aureus, and Escherichia coli. Cytotoxicity was evaluated in vitro in a natural human osteoblasts cell culture. The addition of nanosilver significantly increased the surface roughness and decreased the wettability in a dose-dependent manner. These surfaces were significantly toxic to all the tested bacteria following a 48-hour exposure, regardless of silver doping duration. A concentration of 0.05 ppm was sufficient to inhibit Gram-positive and Gram-negative species, with the latter being significantly more susceptible to silver ions. However, after the exposure of human osteoblasts to 0.1 ppm of silver ions, a significant decrease in cell viability was observed by using ToxiLight™ BioAssay Kit after 72 hours. Data from the present study indicated that the incorporation of nanosilver may influence the surface properties that are important in the implant healing process. The presence of nanosilver on the titanium provides an antibacterial activity related to the bacteria involved in peri-implantitis. Finally, the potential toxicological considerations of nanosilver should further be investigated, as both the antibacterial and cytotoxic properties may be observed at similar concentration ranges. Keywords: biomaterials, dental plaque, peri-implantitis, peri implant mucositis, silver, nanotechnology, nanomedicin

    Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry

    No full text
    corecore