369 research outputs found

    Orchestration of Network Services Across Multiple Operators: The 5G Exchange Prototype

    Get PDF
    Future 5G networks will rely on the coordinated allocation of compute, storage, and networking resources in order to meet the functional requirements of 5G services as well as guaranteeing efficient usage of the network infrastructure. However, the 5G service provisioning paradigm will also require a unified infrastructure service market that integrates multiple operators and technologies. The 5G Exchange (5GEx) project, building heavily on the Software-Defined Network (SDN) and the Network Function Virtualization (NFV) functionalities, tries to overcome this market and technology fragmentation by designing, implementing, and testing a multi-domain orchestrator (MdO) prototype for fast and automated Network Service (NS) provisioning over multiple-technologies and spanning across multiple operators. This paper presents a first implementation of the 5GEx MdO prototype obtained by extending existing open source software tools at the disposal of the 5GEx partners. The main functions of the 5GEx MdO prototype are showcased by demonstrating how it is possible to create and deploy NSs in the context of a Slice as a Service (SlaaS) use-case, based on a multi-operator scenario. The 5GEx MdO prototype performance is experimentally evaluated running validation tests within the 5GEx sandbox. The overall time required for the NS deployment has been evaluated considering NSs deployed across two operators

    Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo

    Get PDF
    The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity

    Amplified B Lymphocyte CD40 Signaling Drives Regulatory B10 Cell Expansion in Mice

    Get PDF
    Aberrant CD40 ligand (CD154) expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154(TG)) have an expanded spleen B cell pool and produce autoantibodies (autoAbs). CD22 deficient (CD22(-/-)) mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154(TG)CD22(-/-) mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation.CD154(TG)CD22(-/-) mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154(TG)CD22(-/-) mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154(TG)CD22(-/-) mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7×10(6)±6 in CD154(TG)CD22(-/-) mice; 1.7×10(6)±0.4 in wild type mice, p<0.01), and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66×10(6)±3 in CD154(TG)CD22(-/-) mice; 6.1×10(6)±2 in wild type mice, p<0.01) that represented 39% of all spleen B cells.These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans

    Worker remittances and the global preconditions of ‘smart development’

    Get PDF
    With the growing environmental crisis affecting our globe, ideas to weigh economic or social progress by the ‘energy input’ necessary to achieve it are increasingly gaining acceptance. This question is intriguing and is being dealt with by a growing number of studies, focusing on the environmental price of human progress. Even more intriguing, however, is the question of which factors of social organization contribute to a responsible use of the resources of our planet to achieve a given social result (‘smart development’). In this essay, we present the first systematic study on how migration – or rather, more concretely, received worker remittances per GDP – helps the nations of our globe to enjoy social and economic progress at a relatively small environmental price. We look at the effects of migration on the balance sheets of societal accounting, based on the ‘ecological price’ of the combined performance of democracy, economic growth, gender equality, human development, research and development, and social cohesion. Feminism in power, economic freedom, population density, the UNDP education index as well as the receipt of worker remittances all significantly contribute towards a ‘smart overall development’, while high military expenditures and a high world economic openness are a bottleneck for ‘smart overall development’

    Ghosts of other stories: a synthesis of hauntology, crime and space

    Get PDF
    Criminology has long sought to illuminate the lived experience of those at the margins. More recently, there has been a turn toward the spatial in the discipline. This paper sets out an analytical framework that synthesizes spatial theory with hauntology. We demonstrate how a given space's violent histories can become embedded in the texts that constitute it and the language that describes it. The art installation ‘Die Familie Schneider’ is used as an example of how the incorporation of social trauma can lead to the formation of a spatial “crypt”. Cracking open this “crypt” allows us to draw out Derrida's notion of the specter within the context of a “haunted” city space

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z′ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the μ + μ −channel. A Z ′ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z′ Models

    Large-Scale Phylogenetic Analysis of Emerging Infectious Diseases

    Get PDF
    Microorganisms that cause infectious diseases present critical issues of national security, public health, and economic welfare.  For example, in recent years, highly pathogenic strains of avian influenza have emerged in Asia, spread through Eastern Europe and threaten to become pandemic. As demonstrated by the coordinated response to Severe Acute Respiratory Syndrome (SARS) and influenza, agents of infectious disease are being addressed via large-scale genomic sequencing.  The goal of genomic sequencing projects are to rapidly put large amounts of data in the public domain to accelerate research on disease surveillance, treatment, and prevention. However, our ability to derive information from large comparative genomic datasets lags far behind acquisition.  Here we review the computational challenges of comparative genomic analyses, specifically sequence alignment and reconstruction of phylogenetic trees.  We present novel analytical results on from two important infectious diseases, Severe Acute Respiratory Syndrome (SARS) and influenza.SARS and influenza have similarities and important differences both as biological and comparative genomic analysis problems.  Influenza viruses (Orthymxyoviridae) are RNA based.  Current evidence indicates that influenza viruses originate in aquatic birds from wild populations. Influenza has been studied for decades via well-coordinated international efforts.  These efforts center on surveillance via antibody characterization of the hemagglutinin (HA) and neuraminidase (N) proteins of the circulating strains to inform vaccine design. However we still do not have a clear understanding of: 1) various transmission pathways such as the role of intermediate hosts such as swine and domestic birds and 2) the key mutation and genomic recombination events that underlie periodic pandemics of influenza.  In the past 30 years, sequence data from HA and N loci has become an important data type. In the past year, full genomic data has become prominent.  These data present exciting opportunities to address unanswered questions in influenza pandemics.SARS is caused by a previously unrecognized lineage of coronavirus, SARS-CoV, which like influenza has an RNA based genome.  Although SARS-CoV is widely believed to have originated in animals there remains disagreement over the candidate animal source that lead to the original outbreak of SARS.  In contrast to the long history of the study of influenza, SARS was only recognized in late 2002 and the virus that causes SARS has been documented primarily by genomic sequencing.In the past, most studies of influenza were performed on a limited number of isolates and genes suited to a particular problem.  Major goals in science today are to understand emerging diseases in broad geographic, environmental, societal, biological, and genomic contexts. Synthesizing diverse information brought together by various researchers is important to find out what can be done to prevent future outbreaks {JON03}.  Thus comprehensive means to organize and analyze large amounts of diverse information are critical.  For example, the relationships of isolates and patterns of genomic change observed in large datasets might not be consistent with hypotheses formed on partial data.  Moreover when researchers rely on partial datasets, they restrict the range of possible discoveries.Phylogenetics is well suited to the complex task of understanding emerging infectious disease. Phylogenetic analyses can test many hypotheses by comparing diverse isolates collected from various hosts, environments, and points in time and organizing these data into various evolutionary scenarios.  The products of a phylogenetic analysis are a graphical tree of ancestor-descendent relationships and an inferred summary of mutations, recombination events, host shifts, geographic, and temporal spread of the viruses.  However, this synthesis comes at a price.  The cost of computation of phylogenetic analysis expands combinatorially as the number of isolates considered increases. Thus, large datasets like those currently produced are commonly considered intractable.  We address this problem with synergistic development of heuristics tree search strategies and parallel computing.Fil: Janies, D.. Ohio State University; Estados UnidosFil: Pol, Diego. Ohio State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore