558 research outputs found

    On the statistics of proto-cluster candidates detected in the Planck all-sky survey

    Get PDF
    Observational investigations of the abundance of massive precursors of local galaxy clusters ("proto-clusters") allow us to test the growth of density perturbations, to constrain cosmological parameters that control it, to test the theory of non-linear collapse and how the galaxy formation takes place in dense environments. The Planck collaboration has recently published a catalogue of >~ 2000 cold extra-galactic sub-millimeter sources, i.e. with colours indicative of z >~ 2, almost all of which appear to be over-densities of star-forming galaxies. They are thus considered as proto-cluster candidates. Their number densities (or their flux densities) are far in excess of expectations from the standard scenario for the evolution of large-scale structure. Simulations based on a physically motivated galaxy evolution model show that essentially all cold peaks brighter than S_545GHz = 500 mJy found in Planck maps after having removed the Galactic dust emission can be interpreted as positive Poisson fluctuations of the number of high-z dusty proto-clusters within the same Planck beam, rather then being individual clumps of physically bound galaxies. This conclusion does not change if an empirical fit to the luminosity function of dusty galaxies is used instead of the physical model. The simulations accurately reproduce the statistic of the Planck detections and yield distributions of sizes and ellipticities in qualitative agreement with observations. The redshift distribution of the brightest proto-clusters contributing to the cold peaks has a broad maximum at 1.5 <~ z <~ 3. Therefore follow-up of Planck proto-cluster candidates will provide key information on the high-z evolution of large scale structure

    Reconstructing the primordial power spectrum from the CMB

    Full text link
    We propose a straightforward and model independent methodology for characterizing the sensitivity of CMB and other experiments to wiggles, irregularities, and features in the primordial power spectrum. Assuming that the primordial cosmological perturbations are adiabatic, we present a function space generalization of the usual Fisher matrix formalism, applied to a CMB experiment resembling Planck with and without ancillary data. This work is closely related to other work on recovering the inflationary potential and exploring specific models of non-minimal, or perhaps baroque, primordial power spectra. The approach adopted here, however, most directly expresses what the data is really telling us. We explore in detail the structure of the available information and quantify exactly what features can be reconstructed and at what statistical significance.Comment: 43 pages Revtex, 23 figure

    Maximum Path Information and Fokker-Planck Equation

    Full text link
    We present in this paper a rigorous method to derive the nonlinear Fokker-Planck (FP) equation of anomalous diffusion directly from a generalization of the principle of least action of Maupertuis proposed by Wang for smooth or quasi-smooth irregular dynamics evolving in Markovian process. The FP equation obtained may take two different but equivalent forms. It was also found that the diffusion constant may depend on both q (the index of Tsallis entropy) and the time t.Comment: 7 page

    Pre - Inflationary Clues from String Theory ?

    Full text link
    "Brane supersymmetry breaking" occurs in String Theory when the only available combinations of D-branes and orientifolds are not mutually BPS and yet do not introduce tree-level tachyon instabilities. It is characterized by the emergence of a steep exponential potential, and thus by the absence of maximally symmetric vacua. The corresponding low-energy supergravity admits intriguing spatially-flat cosmological solutions where a scalar field is forced to climb up toward the steep potential after an initial singularity, and additional milder terms can inject an inflationary phase during the ensuing descent. We show that, in the resulting power spectra of scalar perturbations, an infrared suppression is typically followed by a pre-inflationary peak that reflects the end of the climbing phase and can lie well apart from the approximately scale invariant profile. A first look at WMAP9 raw data shows that, while the chi^2 fits for the low-l CMB angular power spectrum are clearly compatible with an almost scale invariant behavior, they display nonetheless an eye-catching preference for this type of setting within a perturbative string regime.Comment: 34 pages, LaTeX, 16 eps figures. Relative displacement in fig. 14 and some typos corrected, references and acknowledgments updated. To appear in JCA

    Note on a new fundamental length scale ll instead of the Newtonian constant GG

    Full text link
    The newly proposed entropic gravity suggests gravity as an emergent force rather than a fundamental one. In this approach, the Newtonian constant GG does not play a fundamental role any more, and a new fundamental constant is required to replace its position. This request also arises from some philosophical considerations to contemplate the physical foundations for the unification of theories. We here consider the suggestion to derive GG from more fundamental quantities in the presence of a new fundamental length scale ll, which is suspected to originate from the structure of quantum space-time, and can be measured directly from Lorentz-violating observations. Our results are relevant to the fundamental understanding of physics, and more practically, of natural units, as well as explanations of experimental constraints in searching for Lorentz violation.Comment: 10 latex pages, final version for journal publicatio

    Universal restrictions to the conversion of heat into work derived from the analysis of the Nernst theorem as a uniform limit

    Full text link
    We revisit the relationship between the Nernst theorem and the Kelvin-Planck statement of the second law. We propose that the exchange of entropy uniformly vanishes as the temperature goes to zero. The analysis of this assumption shows that is equivalent to the fact that the compensation of a Carnot engine scales with the absorbed heat so that the Nernst theorem should be embedded in the statement of the second law. ----- Se analiza la relaci{\'o}n entre el teorema de Nernst y el enunciado de Kelvin-Planck del segundo principio de la termodin{\'a}mica. Se{\~n}alamos el hecho de que el cambio de entrop{\'\i}a tiende uniformemente a cero cuando la temperatura tiende a cero. El an{\'a}lisis de esta hip{\'o}tesis muestra que es equivalente al hecho de que la compensaci{\'o}n de una m{\'a}quina de Carnot escala con el calor absorbido del foco caliente, de forma que el teorema de Nernst puede derivarse del enunciado del segundo principio.Comment: 8pp, 4 ff. Original in english. Also available translation into spanish. Twocolumn format. RevTe

    Planck 2013 results. VI. High Frequency Instrument data processing

    Get PDF
    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 &lt; l &lt;2500), are intercalibrated at better than 0.2 %

    Measuring neutrino masses with a future galaxy survey

    Full text link
    We perform a detailed forecast on how well a Euclid-like photometric galaxy and cosmic shear survey will be able to constrain the absolute neutrino mass scale. Adopting conservative assumptions about the survey specifications and assuming complete ignorance of the galaxy bias, we estimate that the minimum mass sum of sum m_nu ~ 0.06 eV in the normal hierarchy can be detected at 1.5 sigma to 2.5 sigma significance, depending on the model complexity, using a combination of galaxy and cosmic shear power spectrum measurements in conjunction with CMB temperature and polarisation observations from Planck. With better knowledge of the galaxy bias, the significance of the detection could potentially reach 5.4 sigma. Interestingly, neither Planck+shear nor Planck+galaxy alone can achieve this level of sensitivity; it is the combined effect of galaxy and cosmic shear power spectrum measurements that breaks the persistent degeneracies between the neutrino mass, the physical matter density, and the Hubble parameter. Notwithstanding this remarkable sensitivity to sum m_nu, Euclid-like shear and galaxy data will not be sensitive to the exact mass spectrum of the neutrino sector; no significant bias (< 1 sigma) in the parameter estimation is induced by fitting inaccurate models of the neutrino mass splittings to the mock data, nor does the goodness-of-fit of these models suffer any significant degradation relative to the true one (Delta chi_eff ^2< 1).Comment: v1: 29 pages, 10 figures. v2: 33 pages, 12 figures; added sections on shape evolution and constraints in more complex models, accepted for publication in JCA

    Detection of relic gravitational waves in the CMB: Prospects for CMBPol mission

    Full text link
    Detection of relic gravitational waves, through their imprint in the cosmic microwave background radiation, is one of the most important tasks for the planned CMBPol mission. In the simplest viable theoretical models the gravitational wave background is characterized by two parameters, the tensor-to-scalar ratio rr and the tensor spectral index ntn_t. In this paper, we analyze the potential joint constraints on these two parameters, rr and ntn_t, using the potential observations of the CMBPol mission, which is expected to detect the relic gravitational waves if r≳0.001r\gtrsim0.001. The influence of the contaminations, including cosmic weak lensing, various foreground emissions, and systematical errors, is discussed.Comment: 26 pages, 19 figures, 4 tables; JCAP in pres
    • 

    corecore