107 research outputs found

    The ultraviolet limit and sum rule for the shear correlator in hot Yang-Mills theory

    Full text link
    We determine a next-to-leading order result for the correlator of the shear stress operator in high-temperature Yang-Mills theory. The computation is performed via an ultraviolet expansion, valid in the limit of small distances or large momenta, and the result is used for writing operator product expansions for the Euclidean momentum and coordinate space correlators as well as for the Minkowskian spectral density. In addition, our results enable us to confirm and refine a shear sum rule originally derived by Romatschke, Son and Meyer.Comment: 16 pages, 2 figures. v2: small clarifications, one reference added, published versio

    Hadronic Contributions to the Muon Anomaly in the Constituent Chiral Quark Model

    Get PDF
    The hadronic contributions to the anomalous magnetic moment of the muon which are relevant for the confrontation between theory and experiment at the present level of accuracy, are evaluated within the same framework: the constituent chiral quark model. This includes the contributions from the dominant hadronic vacuum polarization as well as from the next--to--leading order hadronic vacuum polarization, the contributions from the hadronic light-by-light scattering, and the contributions from the electroweak hadronic ZγγZ\gamma\gamma vertex. They are all evaluated as a function of only one free parameter: the constituent quark mass. We also comment on the comparison between our results and other phenomenological evaluations.Comment: Several misprints corrected and a clarifying sentence added. Three figures superposed and two references added. Version to appear in JHE

    Chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner relation

    Get PDF
    The next to leading order chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, ÎŽÏ€\delta_\pi, the value ÎŽÏ€=(6.2,±1.6)\delta_\pi = (6.2, \pm 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate ≃≡∣2 GeV=(−267±5MeV)3 \simeq \equiv |_{2\,\mathrm{GeV}} = (- 267 \pm 5 MeV)^3. As a byproduct, the chiral perturbation theory (unphysical) low energy constant H2rH^r_2 is predicted to be H2r(Μχ=Mρ)=−(5.1±1.8)×10−3H^r_2 (\nu_\chi = M_\rho) = - (5.1 \pm 1.8)\times 10^{-3}, or H2r(Μχ=Mη)=−(5.7±2.0)×10−3H^r_2 (\nu_\chi = M_\eta) = - (5.7 \pm 2.0)\times 10^{-3}.Comment: A comment about the value of the strong coupling has been added at the end of Section 4. No change in results or conslusion

    Search for strongly interacting massive particles generating trackless jets in proton-proton collisions at s = 13 TeV

    Get PDF
    A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 16.1 fb - 1 , collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 GeV are excluded and further sensitivity is explored towards higher masses

    Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of τ Leptons in pp collisions at sqrt[s]=13  TeV

    Get PDF
    Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the τ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event, if any. The analysis is performed using proton-proton collision data collected with the CMS detector at the LHC at a center-of-mass energy of 13  TeV and corresponding to an integrated luminosity of 138  fb^{-1}. These are the first differential measurements of the Higgs boson cross section in the final state of two τ leptons. In final states with a large jet multiplicity or with a Lorentz-boosted Higgs boson, these measurements constitute a significant improvement over measurements performed in other final states

    Search for decays of the 125 GeV Higgs boson into a Z boson and a ρ or ϕ meson

    Get PDF
    Decays of the 125 GeV Higgs boson into a Z boson and a ρ^0(770) or ϕ(1020) meson are searched for using proton-proton collision data collected by the CMS experiment at the LHC at √s = 13 TeV. The analysed data set corresponds to an integrated luminosity of 137 fb⁻Âč. Events are selected in which the Z boson decays into a pair of electrons or a pair of muons, and the ρ and ϕ mesons decay into pairs of pions and kaons, respectively. No significant excess above the background model is observed. As different polarization states are possible for the decay products of the Z boson and ρ or ϕ mesons, affecting the signal acceptance, scenarios in which the decays are longitudinally or transversely polarized are considered. Upper limits at the 95% confidence level on the Higgs boson branching fractions into Zρ and Zϕ are determined to be 1.04–1.31% and 0.31–0.40%, respectively, where the ranges reflect the considered polarization scenarios; these values are 740–940 and 730–950 times larger than the respective standard model expectations. These results constitute the first experimental limits on the two decay channels

    Evidence for Top Quark Production in Nucleus-Nucleus Collisions

    Get PDF
    Peer reviewe

    Search for decays of the 125 GeV Higgs boson into a Z boson and a ρ or ϕ meson

    Get PDF
    Decays of the 125 GeV Higgs boson into a Z boson and a ρ^0(770) or ϕ(1020) meson are searched for using proton-proton collision data collected by the CMS experiment at the LHC at √s = 13 TeV. The analysed data set corresponds to an integrated luminosity of 137 fb⁻Âč. Events are selected in which the Z boson decays into a pair of electrons or a pair of muons, and the ρ and ϕ mesons decay into pairs of pions and kaons, respectively. No significant excess above the background model is observed. As different polarization states are possible for the decay products of the Z boson and ρ or ϕ mesons, affecting the signal acceptance, scenarios in which the decays are longitudinally or transversely polarized are considered. Upper limits at the 95% confidence level on the Higgs boson branching fractions into Zρ and Zϕ are determined to be 1.04–1.31% and 0.31–0.40%, respectively, where the ranges reflect the considered polarization scenarios; these values are 740–940 and 730–950 times larger than the respective standard model expectations. These results constitute the first experimental limits on the two decay channels
    • 

    corecore