1,634 research outputs found

    Cartographic Representation of Averaged Pairwise Information (CRAPI): a new exploratory tool to investigate spatial structures illustrated with genetic data from the Watermelon mosaic virus. [O.15]

    Full text link
    Dedicated analyses in landscape genetics require a priori knowledge on species dispersal abilities. When little is known about the species under study these methods are difficult to apply and, therefore, we rely on exploratory approaches allowing to visualize and confront genetic and environmental variation patterns. We developed a novel exploratory method, free from assumptions, to investigate spatial variations in pairwise genetic metrics computed between georeferenced samples. Graphical outputs can be mapped on landscape layers to further explore potential relationships between genetic and environmental structures. The method relies on both a spatial grid and a network for which the links are materialized by ellipsoidal polygons bearing the pairwise metric values computed between samples. The network is overlayed on the spatial grid and a given cell receives the weighted mean of all ellipses values intersecting a top this cell. CRAPI includes a randomization procedure to test the relevance of the spatial structure emerging from the analysis. To illustrate our method we analysed 396 sequences of native and invasive strains of the Watermelon mosaic virus obtained from cucurbits collected between 2004 and 2008 in South Eastern France. The CRAPI analyses allowed to visualize both the contact zone between native and invasive strains, arising during the early stage of the invasion, and potential effects of landscape features on virus dissemination. (Résumé d'auteur

    Population history, gene flow, and bottlenecks in island populations of a secondary seed disperser, the southern grey shrike (Lanius meridionalis koenigi)

    Get PDF
    Studying the population history and demography of organisms with important ecological roles can aid understanding of evolutionary processes at the community level and inform conservation. We screened genetic variation (mtDNA and microsatellite) across the populations of the southern grey shrike (Lanius meridionalis koenigi) in the Canary Islands, where it is an endemic subspecies and an important secondary seed disperser. We show that the Canarian subspecies is polyphyletic with L. meridionalis elegans from North Africa and that shrikes have colonized the Canary Islands from North Africa multiple times. Substantial differences in genetic diversity exist across islands, which are most likely the product of a combination of historical colonization events and recent bottlenecks. The Eastern Canary Islands had the highest overall levels of genetic diversity and have probably been most recently and/or frequently colonized from Africa. Recent or ongoing bottlenecks were detected in three of the islands and are consistent with anecdotal evidence of population declines due to human disturbance. These findings are troubling given the shrike's key ecological role in the Canary Islands, and further research is needed to understand the community-level consequences of declines in shrike populations. Finally, we found moderate genetic differentiation among populations, which largely reflected the shrike's bottleneck history; however, a significant pattern of isolation-by-distance indicated that some gene flow occurs between islands. This study is a useful first step toward understanding how secondary seed dispersal operates over broad spatial scales

    Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity

    Get PDF
    The early stages of invasion involve demographic bottlenecks that may result in lower genetic variation in introduced populations as compared to source population/s. Low genetic variability may decrease the adaptive potential of such populations in their new environments. Previous population genetic studies of invasive species have reported varying levels of losses of genetic variability in comparisons of source and invasive populations. However, intraspecific comparisons are required to assess more thoroughly the repeatability of genetic consequences of colonization events. Descriptions of invasive species for which multiple introductions from a single source population have been demonstrated may be particularly informative. The western corn rootworm (WCR), Diabrotica virgifera virgifera, native to North America and invasive in Europe, offers us an opportunity to analyse multiple introduction events within a single species. We investigated within- and between-population variation at eight microsatellite markers in WCR in North America and Europe to investigate the routes by which WCR was introduced into Europe, and to assess the effect of introduction events on genetic variation. We detected five independent introduction events from the northern USA into Europe. The diversity loss following these introductions differed considerably between events, suggesting substantial variation in introduction, foundation and/or establishment conditions. Genetic variability at evolutionarily neutral loci does not seem to underlie the invasive success of WCR in Europe. We also showed that the introduction of WCR into Europe resulted in the redistribution of genetic variance from the intra- to the interpopulational level contrary to most examples of multiple introductions

    Stratified dispersal and increasing genetic variation during the invasion of Central Europe by the western corn rootworm, Diabrotica virgifera virgifera

    Get PDF
    Invasive species provide opportunities for investigating evolutionary aspects of colonization processes, including initial foundations of populations and geographic expansion. Using microsatellite markers and historical information, we characterized the genetic patterns of the invasion of the western corn rootworm (WCR), a pest of corn crops, in its largest area of expansion in Europe: Central and South-Eastern (CSE) Europe. We found that the invaded area probably corresponds to a single expanding population resulting from a single introduction of WCR and that gene flow is geographically limited within the population. In contrast to what is expected in classical colonization processes, an increase in genetic variation was observed from the center to the edge of the outbreak. Control measures against WCR at the center of the outbreak may have decreased effective population size in this area which could explain this observed pattern of genetic variation. We also found that small remote outbreaks in southern Germany and north-eastern Italy most likely originated from long-distance dispersal events from CSE Europe. We conclude that the large European outbreak is expanding by stratified dispersal, involving both continuous diffusion and discontinuous long-distance dispersal. This latter mode of dispersal may accelerate the expansion of WCR in Europe in the future

    Russian wheat aphids (Diuraphis noxia) in China: Native range expansion or recent introduction?

    Get PDF
    In this study, we explore the population genetics of the Russian wheat aphid (RWA) (Diuraphis noxia), one of the world’s most invasive agricultural pests, in north-western China. We have analysed the data of 10 microsatellite loci and mitochondrial sequences from 27 populations sampled over 2 years in China. The results confirm that the RWAs are holocyclic in China with high genetic diversity indicating widespread sexual reproduction. Distinct differences in microsatellite genetic diversity and distribution revealed clear geographic isolation between RWA populations in northern and southern Xinjiang, China, with gene flow interrupted across extensive desert regions. Despite frequent grain transportation from north to south in this region, little evidence for RWA translocation as a result of human agricultural activities was found. Consequently, frequent gene flow among northern populations most likely resulted from natural dispersal, potentially facilitated by wind currents. We also found evidence for the longterm existence and expansion of RWAs in China, despite local opinion that it is an exotic species only present in China since 1975. Our estimated date of RWA expansion throughout China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. We conclude that western China represents the limit of the far eastern native range of this species. This study is the most comprehensive molecular genetic investigation of the RWA in its native range undertaken to date and provides valuable insights into the history of the association of this aphid with domesticated cereals and wild grasses

    Secondary contact and admixture between independently invading populations of the Western corn rootworm, diabrotica virgifera virgifera in Europe

    Get PDF
    The western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is one of the most destructive pests of corn in North America and is currently invading Europe. The two major invasive outbreaks of rootworm in Europe have occurred, in North-West Italy and in Central and South-Eastern Europe. These two outbreaks originated from independent introductions from North America. Secondary contact probably occurred in North Italy between these two outbreaks, in 2008. We used 13 microsatellite markers to conduct a population genetics study, to demonstrate that this geographic contact resulted in a zone of admixture in the Italian region of Veneto. We show that i) genetic variation is greater in the contact zone than in the parental outbreaks; ii) several signs of admixture were detected in some Venetian samples, in a Bayesian analysis of the population structure and in an approximate Bayesian computation analysis of historical scenarios and, finally, iii) allelic frequency clines were observed at microsatellite loci. The contact between the invasive outbreaks in North-West Italy and Central and South-Eastern Europe resulted in a zone of admixture, with particular characteristics. The evolutionary implications of the existence of a zone of admixture in Northern Italy and their possible impact on the invasion success of the western corn rootworm are discussed

    On the origin of the invasive olives (Olea europaea L., Oleaceae).

    Get PDF
    The olive tree (Olea europaea) has successfully invaded several regions in Australia and Pacific islands. Two olive subspecies (subspp. europaea and cuspidata) were first introduced in these areas during the nineteenth century. In the present study, we determine the origin of invasive olives and investigate the importance of historical effects on the genetic diversity of populations. Four invasive populations from Australia and Hawaii were characterized using eight nuclear DNA microsatellites, plastid DNA markers as well as ITS-1 sequences. Based on these data, their genetic similarity with native populations was investigated, and it was determined that East Australian and Hawaiian populations (subsp. cuspidata) have originated from southern Africa while South Australian populations (subsp. europaea) have mostly derived from western or central Mediterranean cultivars. Invasive populations of subsp. cuspidata showed significant loss of genetic diversity in comparison to a putative source population, and a recent bottleneck was evidenced in Hawaii. Conversely, invasive populations of subsp. europaea did not display significant loss of genetic diversity in comparison to a native Mediterranean population. Different histories of invasion were inferred for these two taxa with multiple cultivars introduced restoring gene diversity for europaea and a single successful founder event and sequential introductions to East Australia and then Hawaii for cuspidata. Furthermore, one hybrid (cuspidata x europaea) was identified in East Australia. The importance of hybridizations in the future evolution of the olive invasiveness remains to be investigated

    No signs of inbreeding despite long-term isolation and habitat fragmentation in the critically endangered Montseny brook newt (Calotriton arnoldi)

    Get PDF
    Endemic species with restricted geographic ranges potentially suffer the highest risk of extinction. If these species are further fragmented into genetically isolated subpopulations, the risk of extinction is elevated. Habitat fragmentation is generally considered to have negative effects on species survival, despite some evidence for neutral or even positive effects. Typically, non-negative effects are ignored by conservation biology. The Montseny brook newt (Calotriton arnoldi) has one of the smallest distribution ranges of any European amphibian (8 km2) and is considered critically endangered by the International Union for Conservation of Nature. Here we apply molecular markers to analyze its population structure and find that habitat fragmentation owing to a natural barrier has resulted in strong genetic division of populations into two sectors, with no detectable migration between sites. Although effective population size estimates suggest low values for all populations, we found low levels of inbreeding and relatedness between individuals within populations. Moreover, C. arnoldi displays similar levels of genetic diversity to its sister species Calotriton asper, from which it separated around 1.5 million years ago and which has a much larger distribution range. Our extensive study shows that natural habitat fragmentation does not result in negative genetic effects, such as the loss of genetic diversity and inbreeding on an evolutionary timescale. We hypothesize that species in such conditions may evolve strategies (for example, special mating preferences) to mitigate the effects of small population sizes. However, it should be stressed that the influence of natural habitat fragmentation on an evolutionary timescale should not be conflated with anthropogenic habitat loss or degradation when considering conservation strategies

    Methodological optimization and standardization of the metabarcoding of insects gut microbiome

    Full text link
    Metabarcoding analysis of microbiota could help understand how Orthopteran species cope with challenges associated with environmental changes. Since microbial symbionts have a mutually beneficial relationship with its host and play important roles in the immune and physiological systems, they likely impact its ecology and evolution (i.e. plant range, life history, behaviour). In addition, the analysis of the complex pathogenic communities associated with locusts could be useful to discover unexplored pathogens and develop future research on biological control innovation. Yet, current knowledge of Orthopteran-associated microbial communities is limited. This is partly because recognizing cryptic, diverse, and numerous microorganisms hosted by insects is a difficult task. Despite the design of standard genes for their identification and the latest advances in high throughput sequencing, difficulties persist when we look at the microbiota of insects, including Orthopterans. (1) DNA purification is an essential step in all cultivationindependent approaches to characterize microbial diversity. Indeed, the microbial composition is mainly biased by the efficiency of cell lysis. (2) Another critical step for unbiased representation analysis and high taxonomic resolution is the choice of amplicon and primers. In particular, we showed that Enterobacteriacea, common in insects, were poorly resolved with some of currently used amplicons. (3) Moreover, in the case of phytophagous insects, it is necessary to avoid the amplification of plant remains contained in the digestive tract. In this study, we use (1) three mock community standards that contained equal and logarithmic numbers of eight species (ZymoBIOMICS), and equal numbers of twenty other species (ATCC), and (2) six samplesrepresenting the six main orders of insects (Orthoptera, Diptera, Hemiptera, Coleoptera, Hymenoptera and Lepidoptera). On these dedicated samples, we first statistically evaluate the most commonly used DNA purification kit (Qiagen DNeasy Blood and Tissue), two microorganisms-specific DNA purification kits (ZymoBIOMICS-96 bashing beads and DNeasy UltraClean 96 Microbial Kit) and two homemade procedures (bashing beads and enzymatic cocktails added to Qiagen DNeasy Blood and Tissue). These methods are compared on the basis of DNA yield, DNA shearing, reproducibility, and most importantly representation of microbial diversityin 16S rRNA gene sequences. . Secondly, we are currently evaluating the taxonomic representativity and resolution of different 16S gene primers to avoid plant chloroplast genes amplifications. Second, we evaluate, using in silico analyses, (1) the PCR efficiency (representativity), (2) the taxonomic resolution and (3) the risk to amplify plant chloroplasts of already published primers on various variable regions of the 16S gene (V3, V4, V6, V9) and of the rpoB gene. We then test and validate in vitro the best primer candidates on the dedicated samples
    corecore