14 research outputs found

    Cosmic Structure and Dynamics of the Local Universe

    Full text link
    We present a cosmography analysis of the Local Universe based on the recently released Two-Micron All-Sky Redshift Survey (2MRS). Our method is based on a Bayesian Networks Machine Learning algorithm (the Kigen-code) which self-consistently samples the initial density fluctuations compatible with the observed galaxy distribution and a structure formation model given by second order Lagrangian perturbation theory (2LPT). From the initial conditions we obtain an ensemble of reconstructed density and peculiar velocity fields which characterize the local cosmic structure with high accuracy unveiling nonlinear structures like filaments and voids in detail. Coherent redshift space distortions are consistently corrected within 2LPT. From the ensemble of cross-correlations between the reconstructions and the galaxy field and the variance of the recovered density fields we find that our method is extremely accurate up to k ~ 1 h Mpc^-1 and still yields reliable results down to scales of about 3-4 h^-1 Mpc. The motion of the local group we obtain within ~ 80 h^-1 Mpc (v_LG=522+-86 km s^-1, l_LG=291^o +- 16^o, b_LG=34^o+-8^o) is in good agreement with measurements derived from the CMB and from direct observations of peculiar motions and is consistent with the predictions of LambdaCDM.Comment: 6 pages, 5 figures; accepted at MNRAS after minor correction

    Scale-dependent Galaxy Bias

    Full text link
    We present a simple heuristic model to demonstrate how feedback related to the galaxy formation process can result in a scale-dependent bias of mass versus light, even on very large scales. The model invokes the idea that galaxies form initially in locations determined by the local density field, but the subsequent formation of galaxies is also influenced by the presence of nearby galaxies that have already formed. The form of bias that results possesses some features that are usually described in terms of stochastic effects, but our model is entirely deterministic once the density field is specified. Features in the large-scale galaxy power spectrum (such as wiggles that might in an extreme case mimic the effect of baryons on the primordial transfer function) could, at least in principle, arise from spatial modulations of the galaxy formation process that arise naturally in our model. We also show how this fully deterministic model gives rise to apparently stochasticity in the galaxy distribution.Comment: 14 pages, 2 figures, typos corrected, discussion added and references corrected; matches version accepted by JCA

    Is the misalignment of the Local Group velocity and the 2MASS Redshift Survey dipole typical in a LambdaCDM model?

    Full text link
    We predict the acceleration of the Local Group generated by the 2MASS Redshift Survey within the framework of LambdaCDM and the halo model of galaxies. We show that as the galaxy fluctuations derived from the halo model have more power on small scales compared with the mass fluctuations, the misalignment angle between the CMB velocity vector and the 2MRS dipole is in reasonable agreement with the observed 21 degrees. This statistical analysis suggests that it is not necessary to invoke a hypothetical nearby galaxy or a distant cluster to explain this misalignment.Comment: Extended version, accepted for publication in PRD, 7 pages, 3 figure

    The 2dF Galaxy Redshift Survey: Wiener reconstruction of the cosmic web

    Get PDF
    We reconstruct the underlying density field of the Two-degree Field Galaxy Redshift Survey (2dFGRS) for the redshift range 0.035 < z < 0.200 using the Wiener filtering method. The Wiener filter suppresses shot noise and accounts for selection and incompleteness effects. The method relies on prior knowledge of the 2dF power spectrum of fluctuations and the combination of matter density and bias parameters, however the results are only slightly affected by changes to these parameters. We present maps of the density field. We use a variable smoothing technique with two different effective resolutions: 5 and 10 h−1 Mpc at the median redshift of the survey. We identify all major superclusters and voids in the survey. In particular, we find two large superclusters and two large local voids. The full set of colour maps can be viewed on the World Wide Web a

    The 6dF Galaxy Survey: peculiar velocity field and cosmography

    Get PDF
    We derive peculiar velocities for the 6dF Galaxy Survey (6dFGS) and describe the velocity field of the nearby (z<0.055z<0.055) southern hemisphere. The survey comprises 8885 galaxies for which we have previously reported Fundamental Plane data. We obtain peculiar velocity probability distributions for the redshift space positions of each of these galaxies using a Bayesian approach. Accounting for selection bias, we find that the logarithmic distance uncertainty is 0.11 dex, corresponding to 26%26\% in linear distance. We use adaptive kernel smoothing to map the observed 6dFGS velocity field out to cz16,000cz \sim 16,000 \kms, and compare this to the predicted velocity fields from the PSCz Survey and the 2MASS Redshift Survey. We find a better fit to the PSCz prediction, although the reduced χ2\chi^2 for the whole sample is approximately unity for both comparisons. This means that, within the observational uncertainties due to redshift independent distance errors, observed galaxy velocities and those predicted by the linear approximation from the density field agree. However, we find peculiar velocities that are systematically more positive than model predictions in the direction of the Shapley and Vela superclusters, and systematically more negative than model predictions in the direction of the Pisces-Cetus Supercluster, suggesting contributions from volumes not covered by the models.Comment: 22 pages, 14 figures, accepted for publication in MNRAS. Table 1 is available in its entirety as an ancillary file. Fully interactive 3D versions of Figures 11 and 12 are also available as ancillary files. A version of this paper with the 3D versions of Figs. 11 and 12 embedded within the pdf can also be accessed from http://www.6dfgs.net/vfield/veldata.pd

    The 2MASS Redshift Survey - Description and Data Release

    Get PDF
    We present the results of the 2MASS Redshift Survey (2MRS), a ten-year project to map the full three-dimensional distribution of galaxies in the nearby Universe. The 2 Micron All-Sky Survey (2MASS) was completed in 2003 and its final data products, including an extended source catalog (XSC), are available on-line. The 2MASS XSC contains nearly a million galaxies with Ks <= 13.5 mag and is essentially complete and mostly unaffected by interstellar extinction and stellar confusion down to a galactic latitude of |b|=5 deg for bright galaxies. Near-infrared wavelengths are sensitive to the old stellar populations that dominate galaxy masses, making 2MASS an excellent starting point to study the distribution of matter in the nearby Universe. We selected a sample of 44,599 2MASS galaxies with Ks =5 deg (>= 8 deg towards the Galactic bulge) as the input catalog for our survey. We obtained spectroscopic observations for 11,000 galaxies and used previously-obtained velocities for the remainder of the sample to generate a redshift catalog that is 97.6% complete to well-defined limits and covers 91% of the sky. This provides an unprecedented census of galaxy (baryonic mass) concentrations within 300 Mpc. Earlier versions of our survey have been used in a number of publications that have studied the bulk motion of the Local Group, mapped the density and peculiar velocity fields out to 50 Mpc, detected galaxy groups, and estimated the values of several cosmological parameters. Additionally, we present morphological types for a nearly-complete sub-sample of 20,860 galaxies with Ks = 10 deg.Comment: Accepted for publication in The Astrophysical Journal Supplement Series. The 2MRS catalogs and a version of the paper with higher-resolution figures can be found at http://tdc-www.harvard.edu/2mrs

    Modified gravity and large scale flows

    Get PDF
    Reconstruction of the local velocity field from the overdensity field and a gravitational acceleration that falls off from a point mass as r −2 yields velocities in broad agreement with peculiar velocities measured with galaxy distance indicators. MONDian gravity does not. To quantify this, we introduce the velocity angular correlation function as a diagnostic of peculiar velocity field alignment and coherence as a function of scale. It is independent of the bias parameter of structure formation in the standard model of cosmology and the acceleration parameter of MOND. A modified gravity acceleration consistent with observed large scale structure would need to asymptote to zero at large distances more like r −2, than r −1

    The 6dF Galaxy Survey: peculiar velocity field and cosmography

    Get PDF
    We derive peculiar velocities for the 6dF Galaxy Survey (6dFGS) and describe the velocity field of the nearby (z < 0.055) Southern hemisphere. The survey comprises 8885 galaxies for which we have previously reported Fundamental Plane data. We obtain peculiar velocity probability distributions for the redshift-space positions of each of these galaxies using a Bayesian approach. Accounting for selection bias, we find that the logarithmic distance uncertainty is 0.11 dex, corresponding to 26 per cent in linear distance. We use adaptive kernel smoothing to map the observed 6dFGS velocity field out to cz ∼ 16 000 km s−1, and compare this to the predicted velocity fields from the PSCz Survey and the 2MASS Redshift Survey. We find a better fit to the PSCz prediction, although the reduced χ2 for the whole sample is approximately unity for both comparisons. This means that, within the observational uncertainties due to redshift-independent distance errors, observed galaxy velocities and those predicted by the linear approximation from the density field agree. However, we find peculiar velocities that are systematically more positive than model predictions in the direction of the Shapley and Vela superclusters, and systematically more negative than model predictions in the direction of the Pisces-Cetus Supercluster, suggesting contributions from volumes not covered by the models
    corecore