2,384 research outputs found
Influence of extraction methods on the composition of essential oils of Achillea millefolium L. from Lithuania
In this study, flowering aerial parts of Achillea millefolium were used as a matrix for supercritical CO2 extraction (SFE) of volatile oil. The collected extracts were analyzed by GC-FID and GC-MS methods and their composition were compared with that of the essential oil isolated by hydrodistillation (HD). The composition of the essential oil obtained by hydrodistillation and SFE methods is widely different. Indeed, the SFE volatile oil had a pale yellow color whereas the HD oil had a blue color due to the presence of chamazulene (48.0% vs. 4.3%). Other important constituents of HD oil were (E)- caryophyllene (19.5 %) and γ-muurolene (13.1%). The CO2 supercritical extract was dominated by (E)-caryophyllene (26.0%), γ-muurolene (22.0%), and caryophyllene oxide (8.1%)
Cerebellar structural variations in subjects with different hypnotizability
Hypnotizability-the proneness to accept suggestions and behave accordingly-has a number of physiological and behavioral correlates (postural, visuomotor, and pain control) which suggest a possible involvement of cerebellar function and/or structure. The present study was aimed at investigating the association between cerebellar macro- or micro-structural variations (analyzed through a voxel-based morphometry and a diffusion tensor imaging approach) and hypnotic susceptibility. We also estimated morphometric variations of cerebral gray matter structures, to support current evidence of hypnotizability-related differences in some cerebral areas. High (highs, N = 12), and low (lows, N = 37) hypnotizable healthy participants (according to the Stanford Hypnotic Susceptibility Scale, form A) were submitted to a high field (3 T) magnetic resonance imaging protocol. In comparison to lows, highs showed smaller gray matter volumes in left cerebellar lobules IV/V and VI at uncorrected level, with the results in left lobule IV/V maintained also at corrected level. Highs showed also gray matter volumes smaller than lows in right inferior temporal gyrus, middle and superior orbitofrontal cortex, parahippocampal gyrus, and supramarginal parietal gyrus, as well as in left gyrus rectus, insula, and middle temporal cortex at uncorrected level. Results of right inferior temporal gyrus survived also at corrected level. Analyses on micro-structural data failed to reveal any significant association. The here found morphological variations allow to extend the traditional cortico-centric view of hypnotizability to the cerebellar regions, suggesting that cerebellar peculiarities may sustain hypnotizability-related differences in sensorimotor integration and emotional contro
Two patients with history of STEC-HUS, posttransplant recurrence and complement gene mutations
Hemolytic uremic syndrome (HUS) is a disease of microangiopathic hemolytic anemia, thrombocytopenia and acute renal failure. About 90% of cases are secondary to infections by Escherichia coli strains producing Shiga-like toxins (STEC-HUS), while 10% are associated with mutations in genes encoding proteins of complement system (aHUS). We describe two patients with a clinical history of STEC-HUS, who developed end-stage renal disease (ESRD) soon after disease onset. They received a kidney transplant but lost the graft for HUS recurrence, a complication more commonly observed in aHUS. Before planning a second renal transplantation, the two patients underwent genetic screening for aHUS-associated mutations that revealed the presence of a heterozygous CFI mutation in patient #1 and a heterozygous MCP mutation in patient #2, and also in her mother who donated the kidney. This finding argues that the two cases originally diagnosed as STEC-HUS had indeed aHUS triggered by STEC infection on a genetic background of impaired complement regulation. Complement gene sequencing should be performed before kidney transplantation in patients who developed ESRD following STEC-HUS since they may be undiagnosed cases of aHUS, at risk of posttransplant recurrence. Furthermore, genetic analysis of donors is mandatory before living-related transplantation to exclude carriers of HUS-predisposing mutations. Two patients with a clinical history of D+ hemolytic uremic syndrome associated with Shiga-toxin-producing 0157:H7 E. coli and recurrence in the kidney graft carry heterozygous mutations in the genes encoding complement factor I (patient 1) and membrane cofactor protein (patient 2). © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons
The TPS Direct Transport: a new method for transporting deformations in the Size-and-shape Space
Modern shape analysis allows the fine comparison of shape changes occurring between different objects. Very often the classic machineries of Generalized Procrustes Analysis and Principal Component Analysis are used in order to contrast the shape change occurring among configurations represented by homologous landmarks. However, if size and shape data are structured in different groups thus constituting different morphological trajectories, a data centering is needed if one wants to compare solely the deformation representing the trajectories. To do that, inter-individual variation must be filtered out. This maneuver is rarely applied in studies using simulated or real data. A geometrical procedure named Parallel Transport, that can be based on various connection types, is necessary to perform such kind of data centering. Usually, the Levi Civita connection is used for interpolation of curves in a Riemannian space. It can also be used to transport a deformation. We demonstrate that this procedure does not preserve some important characters of the deformation, even in the affine case. We propose a novel procedure called `TPS Direct Transport' which is able to perfectly transport deformation in the affine case and to better approximate non affine deformation in comparison to existing tools. We recommend to center shape data using the methods described here when the differences in deformation rather than in shape are under study
Appearance of breast cysts in planar geometry photoacoustic mammography using 1064-nm excitation
In the search for improved imaging modalities for detection and diagnosis of breast cancer, a high negative prediction value is also important. Photoacoustic (optoacoustic) imaging is a relatively new technique that has high potential for visualizing breast malignancies, but little is known about the photoacoustic appearance of benign lesions. In this work, we investigate the visibility of benign breast cysts in forward-mode photoacoustic mammography using 1064-nm light, as currently applied in the Twente photoacoustic mammoscope. Results from (Monte Carlo and k-wave) simulations and phantom measurements were used to interpret results from patient measurements. There was a strong agreement among the results from simulations, phantom, and patient measurements. Depending on the absorption contrast between cyst and breast tissue, cysts were visible as either one or two confined high-contrast areas representing the front and the back of the cyst, respectively. This edge enhancement is most likely the consequence of the local sudden change in the absorbed energy density and Grüneisen coefficients. Although the current forward-mode single-wavelength photoacoustic mammoscope cannot always unambiguously discriminate cysts from malignancies, this study reveals specific features of cysts compared to malignancies, which can be exploited for discrimination of the two abnormalities in future modifications of the image
Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite
This research activity was aimed at the development of composite bioactive scaffolds made of
biodegradable three-arm branched-star poly(ε-caprolactone) (∗PCL), hydroxyapatite nanoparticles
(HNPs) and clodronate (CD), a bisphosphonate that has demonstrated efficacy in the treatment
of various bone diseases and as an anti-inflammatory drug. During the experimental work, the
processing conditions for the fabrication of fibrous meshes, by either electrospinning or wetspinning,
were optimized. Stemming from a previous research activity on electrospinning of ∗PCL,
∗PCL/HNPs 3D meshes were developed, evaluating the influence of fabrication parameters on the
fibres’ morphology. By exploiting the binding affinity of bisphosphonates for hydroxyapatite, a
methodology was set up for obtaining a physical linkage between CD and HNPs, with the aim
of having a dual bioactive system loaded into ∗PCL fibrous mats. Fibres loaded with either CD
or CD–HNP particles were thus produced and analysed by scanning electron microscopy for their
morphology and by energy dispersive X-ray spectroscopy for their elemental compositionThis work was done within the framework of the European Network of Excellence 'EXPERTISSUES', Project No. NMP3-CT-2004-500283. Professor Ramani Narayan of Michigan Biotechnology Institute and Dr Fabio Neggiani of Abiogen Pharma-Pisa are acknowledged for supplying *PCL and CD, respectively
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Biodegradable nanomats produced by electrospinning : expanding multifunctionality and potential for tissue engineering
With increasing interest in nanotechnology, development of nanofibers (n-fibers) by using the
technique of electrospinning is gaining new momentum. Among important potential applications of
n-fiber-based structures, scaffolds for tissue-engineering represent an advancing front. Nanoscaffolds
(n-scaffolds) are closer to natural extracellular matrix (ECM) and its nanoscale fibrous structure.
Although the technique of electrospinning is relatively old, various improvements have been
made in the last decades to explore the spinning of submicron fibers from biodegradable polymers
and to develop also multifunctional drug-releasing and bioactive scaffolds. Various factors can
affect the properties of resulting nanostructures that can be classified into three main categories,
namely: (1) Substrate related, (2) Apparatus related, and (3) Environment related factors. Developed
n-scaffolds were tested for their cytocompatibility using different cell models and were seeded
with cells for to develop tissue engineering constructs. Most importantly, studies have looked at the
potential of using n-scaffolds for the development of blood vessels. There is a large area ahead
for further applications and development of the field. For instance, multifunctional scaffolds that
can be used as controlled delivery system do have a potential and have yet to be investigated for
engineering of various tissues. So far, in vivo data on n-scaffolds are scarce, but in future reports
are expected to emerge. With the convergence of the fields of nanotechnology, drug release and
tissue engineering, new solutions could be found for the current limitations of tissue engineering
scaffolds, which may enhance their functionality upon in vivo implantation. In this paper electrospinning
process, factors affecting it, used polymers, developed n-scaffolds and their characterization
are reviewed with focus on application in tissue engineering
Recommended from our members
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries.
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Clinical global impression-severity score as a reliable measure for routine evaluation of remission in schizophrenia and schizoaffective disorders
Aims: This study aimed to compare the performance of Positive and Negative Syndrome Scale (PANSS) symptom severity criteria established by the Remission in Schizophrenia Working Group (RSWG) with criteria based on Clinical Global Impression (CGI) severity score. The 6-month duration criterion was not taken into consideration.
Methods: A convenience sample of 112 chronic psychotic outpatients was examined. Symptomatic remission was evaluated according to RSWG severity criterion and to a severity criterion indicated by the overall score obtained at CGI-Schizophrenia (CGI-SCH) rating scale (≤3) (CGI-S).
Results: Clinical remission rates of 50% and 49.1%, respectively, were given by RSWG and CGI-S, with a significant level of agreement between the two criteria in identifying remitted and non-remitted cases. Mean scores at CGI-SCH and PANSS scales were significantly higher among remitters, independent of the remission criteria adopted. Measures of cognitive functioning were largely independent of clinical remission evaluated according to both RSWG and CGI-S. When applying RSWG and CGI-S criteria, the rates of overall good functioning yielded by Personal and Social Performance scale (PSP) were 32.1% and 32.7%, respectively, while the mean scores at PSP scale differed significantly between remitted and non-remitted patients, independent of criteria adopted. The proportion of patients judged to be in a state of well-being on Social Well-Being Under Neuroleptics-Short Version scale (SWN-K) were, respectively, 66.1% and 74.5% among remitters according to RSWG and CGI-S; the mean scores at the SWN scale were significantly higher only among remitters according to CGI-S criteria.
Conclusions: CGI severity criteria may represent a valid and user-friendly alternative for use in identifying patients in remission, particularly in routine clinical practic
- …
