387 research outputs found

    Assortative mating and differential male mating success in an ash hybrid zone population

    Get PDF
    BACKGROUND: The structure and evolution of hybrid zones depend mainly on the relative importance of dispersal and local adaptation, and on the strength of assortative mating. Here, we study the influence of dispersal, temporal isolation, variability in phenotypic traits and parasite attacks on the male mating success of two parental species and hybrids by real-time pollen flow analysis. We focus on a hybrid zone population between the two closely related ash species Fraxinus excelsior L. (common ash) and F. angustifolia Vahl (narrow-leaved ash), which is composed of individuals of the two species and several hybrid types. This population is structured by flowering time: the F. excelsior individuals flower later than the F. angustifolia individuals, and the hybrid types flower in-between. Hybrids are scattered throughout the population, suggesting favorable conditions for their local adaptation. We estimate jointly the best-fitting dispersal kernel, the differences in male fecundity due to variation in phenotypic traits and level of parasite attack, and the strength of assortative mating due to differences in flowering phenology. In addition, we assess the effect of accounting for genotyping error on these estimations. RESULTS: We detected a very high pollen immigration rate and a fat-tailed dispersal kernel, counter-balanced by slight phenological assortative mating and short-distance pollen dispersal. Early intermediate flowering hybrids, which had the highest male mating success, showed optimal sex allocation and increased selfing rates. We detected asymmetry of gene flow, with early flowering trees participating more as pollen donors than late flowering trees. CONCLUSION: This study provides striking evidence that long-distance gene flow alone is not sufficient to counter-act the effects of assortative mating and selfing. Phenological assortative mating and short-distance dispersal can create temporal and spatial structuring that appears to maintain this hybrid population. The asymmetry of gene flow, with higher fertility and increased selfing, can potentially confer a selective advantage to early flowering hybrids in the zone. In the event of climate change, hybridization may provide a means for F. angustifolia to further extend its range at the expense of F. excelsior

    Sub-terahertz, microwaves and high energy emissions during the December 6, 2006 flare, at 18:40 UT

    Full text link
    The presence of a solar burst spectral component with flux density increasing with frequency in the sub-terahertz range, spectrally separated from the well-known microwave spectral component, bring new possibilities to explore the flaring physical processes, both observational and theoretical. The solar event of 6 December 2006, starting at about 18:30 UT, exhibited a particularly well-defined double spectral structure, with the sub-THz spectral component detected at 212 and 405 GHz by SST and microwaves (1-18 GHz) observed by the Owens Valley Solar Array (OVSA). Emissions obtained by instruments in satellites are discussed with emphasis to ultra-violet (UV) obtained by the Transition Region And Coronal Explorer (TRACE), soft X-rays from the Geostationary Operational Environmental Satellites (GOES) and X- and gamma-rays from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The sub-THz impulsive component had its closer temporal counterpart only in the higher energy X- and gamma-rays ranges. The spatial positions of the centers of emission at 212 GHz for the first flux enhancement were clearly displaced by more than one arc-minute from positions at the following phases. The observed sub-THz fluxes and burst source plasma parameters were found difficult to be reconciled to a purely thermal emission component. We discuss possible mechanisms to explain the double spectral components at microwaves and in the THz ranges.Comment: Accepted version for publication in Solar Physic

    Seismic constraints on rotation of Sun-like star and mass of exoplanet

    Full text link
    Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of 1.85 (+0.52,-0.42) M_Jupiter, which implies that it is a planet, not a brown dwarf.Comment: Published in Proceedings of the National Academy of Sciences (5 pages, 5 figures, 3 tables). Available at http://www.pnas.org/cgi/doi/10.1073/pnas.130329111

    Les traits géologiques essentiels des Andes centrales (Pérou-Bolivie)

    Get PDF
    The peruano•bolivian segment of the Andes is about 2500 km long and its direction is NW-SE north of 18° S, submeridian further south. Its frame made of precambrian and hercynian folded material, constitutes a sialic basement for the Andean orogenic belt. From a stratigraphical point of view, the peruano-bolivian Andes appear as an intracratonic chain, where continental or neritic series prevail. The paleogeographic evolution is controlled by a system of two or three basins separated by rises and generally oriented parallel to the future chain; its most internal element is a high zone, where an intense volcanic activity has been remarkably constant in time and. space during the Mesozoic. The chain built up through three brief and homo•axial tectonic phases occurring respectively at the end of the Cretaceous, the end of the Eocene and the mid•Pliocene, that develop a moderate folding accompanied by large faults and by rare and local overthrusts. From one phase to the other, the concerned zone migrates progressively to the east. The magmatic evolution appears to be clearly related to the "liminal" position of the chain, that is to the existence of a subduction zone. During the upper Cretaceous and the Tertiary the intrusion of the granodioritic batholiths takes place. Their age and volume gradually decrease to the east. Then a powerful calc•alkaline volcanism sets up, the emissive centers of which migrate too in an easterly direction through the Tertiary

    Assessing the health status of managed honeybee colonies (HEALTHY-B): a toolbox to facilitate harmonised data collection

    Get PDF
    Tools are provided to assess the health status of managed honeybee colonies by facilitating further harmonisation of data collection and reporting, design of field surveys across the European Union (EU) and analysis of data on bee health. The toolbox is based on characteristics of a healthy managed honeybee colony: an adequate size, demographic structure and behaviour; an adequate production of bee products (both in relation to the annual life cycle of the colony and the geographical location); and provision of pollination services. The attributes ‘queen presence and performance’, ‘demography of the colony’, ‘in-hive products’ and ‘disease, infection and infestation’ could be directly measured in field conditions across the EU, whereas ‘behaviour and physiology’ is mainly assessed through experimental studies. Analysing the resource providing unit, in particular land cover/use, of a honeybee colony is very important when assessing its health status, but tools are currently lacking that could be used at apiary level in field surveys across the EU. Data on ‘beekeeping management practices’ and ‘environmental drivers’ can be collected via questionnaires and available databases, respectively. The capacity to provide pollination services is regarded as an indication of a healthy colony, but it is assessed only in relation to the provision of honey because technical limitations hamper the assessment of pollination as regulating service (e.g. to pollinate wild plants) in field surveys across the EU. Integrating multiple attributes of honeybee health, for instance, via a Health Status Index, is required to support a holistic assessment. Examples are provided on how the toolbox could be used by different stakeholders. Continued interaction between the Member State organisations, the EU Reference Laboratory and EFSA is required to further validate methods and facilitate the efficient use of precise and accurate bee health data that are collected by many initiatives throughout the EU

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Classification of Ancient Mammal Individuals Using Dental Pulp MALDI-TOF MS Peptide Profiling

    Get PDF
    International audienceBackground The classification of ancient animal corpses at the species level remains a challenging task for forensic scientists and anthropologists. Severe damage and mixed, tiny pieces originating from several skeletons may render morphological classification virtually impossible. Standard approaches are based on sequencing mitochondrial and nuclear targets. Methodology/Principal Findings We present a method that can accurately classify mammalian species using dental pulp and mass spectrometry peptide profiling. Our work was organized into three successive steps. First, after extracting proteins from the dental pulp collected from 37 modern individuals representing 13 mammalian species, trypsin-digested peptides were used for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The resulting peptide profiles accurately classified every individual at the species level in agreement with parallel cytochrome b gene sequencing gold standard. Second, using a 279-modern spectrum database, we blindly classified 33 of 37 teeth collected in 37 modern individuals (89.1%). Third, we classified 10 of 18 teeth (56%) collected in 15 ancient individuals representing five mammal species including human, from five burial sites dating back 8,500 years. Further comparison with an upgraded database comprising ancient specimen profiles yielded 100% classification in ancient teeth. Peptide sequencing yield 4 and 16 different non-keratin proteins including collagen (alpha-1 type I and alpha-2 type I) in human ancient and modern dental pulp, respectively. Conclusions/Significance Mass spectrometry peptide profiling of the dental pulp is a new approach that can be added to the arsenal of species classification tools for forensics and anthropology as a complementary method to DNA sequencing. The dental pulp is a new source for collagen and other proteins for the species classification of modern and ancient mammal individuals

    Special Care and School Difficulties in 8-Year-Old Very Preterm Children: The Epipage Cohort Study

    Get PDF
    OBJECTIVES: To investigate school difficulties, special care and behavioral problems in 8 year-old very preterm (VPT) children. PATIENT AND METHODS: Longitudinal population-based cohort in nine regions of France of VPT children and a reference group born at 39-40 weeks of gestation (WG). The main outcome measures were information about school, special care and behavioral problems using Strengths and Difficulties Questionnaire from a questionnaire to parents. RESULTS: Among the 1439 VPT children, 5% (75/1439) were in a specialised school or class, 18% (259/1439) had repeated a grade in a mainstream class and 77% (1105/1439) were in the appropriate grade-level in mainstream class; these figures were 1% (3/327) , 5% (16/327) and 94% (308/327) , respectively, for the reference group. Also, 15% (221/1435) of VPT children in a mainstream class received support at school versus 5% (16/326) of reference group. More VPT children between the ages of five and eight years received special care (55% (794/1436)) than children born at term (38% (124/325)); more VPT children (21% (292/1387)) had behavioral difficulties than the reference group (11% (35/319)). School difficulties, support at school, special care and behavioral difficulties in VPT children without neuromotor or sensory deficits varied with gestational age, socioeconomic status, and cognitive score at the age of five. CONCLUSIONS: Most 8-year-old VPT children are in mainstream schools. However, they have a high risk of difficulty in school, with more than half requiring additional support at school and/or special care. Referral to special services has increased between the ages of 5 and 8 years, but remained insufficient for those with borderline cognitive scores

    Prediction of High-Grade Vesicoureteral Reflux after Pediatric Urinary Tract Infection: External Validation Study of Procalcitonin-Based Decision Rule

    Get PDF
    BACKGROUND: Predicting vesico-ureteral reflux (VUR) 653 at the time of the first urinary tract infection (UTI) would make it possible to restrict cystography to high-risk children. We previously derived the following clinical decision rule for that purpose: cystography should be performed in cases with ureteral dilation and a serum procalcitonin level 650.17 ng/mL, or without ureteral dilatation when the serum procalcitonin level 650.63 ng/mL. The rule yielded a 86% sensitivity with a 46% specificity. We aimed to test its reproducibility. STUDY DESIGN: A secondary analysis of prospective series of children with a first UTI. The rule was applied, and predictive ability was calculated. RESULTS: The study included 413 patients (157 boys, VUR 653 in 11%) from eight centers in five countries. The rule offered a 46% specificity (95% CI, 41-52), not different from the one in the derivation study. However, the sensitivity significantly decreased to 64% (95%CI, 50-76), leading to a difference of 20% (95%CI, 17-36). In all, 16 (34%) patients among the 47 with VUR 653 were misdiagnosed by the rule. This lack of reproducibility might result primarily from a difference between derivation and validation populations regarding inflammatory parameters (CRP, PCT); the validation set samples may have been collected earlier than for the derivation one. CONCLUSIONS: The rule built to predict VUR 653 had a stable specificity (ie. 46%), but a decreased sensitivity (ie. 64%) because of the time variability of PCT measurement. Some refinement may be warranted
    corecore