205 research outputs found

    Mechanism of ignition in shock wave interactions with reactive liquid droplets

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76975/1/AIAA-1975-163-254.pd

    Two-temperature LATE-PCR endpoint genotyping

    Get PDF
    BACKGROUND: In conventional PCR, total amplicon yield becomes independent of starting template number as amplification reaches plateau and varies significantly among replicate reactions. This paper describes a strategy for reconfiguring PCR so that the signal intensity of a single fluorescent detection probe after PCR thermal cycling reflects genomic composition. The resulting method corrects for product yield variations among replicate amplification reactions, permits resolution of homozygous and heterozygous genotypes based on endpoint fluorescence signal intensities, and readily identifies imbalanced allele ratios equivalent to those arising from gene/chromosomal duplications. Furthermore, the use of only a single colored probe for genotyping enhances the multiplex detection capacity of the assay. RESULTS: Two-Temperature LATE-PCR endpoint genotyping combines Linear-After-The-Exponential (LATE)-PCR (an advanced form of asymmetric PCR that efficiently generates single-stranded DNA) and mismatch-tolerant probes capable of detecting allele-specific targets at high temperature and total single-stranded amplicons at a lower temperature in the same reaction. The method is demonstrated here for genotyping single-nucleotide alleles of the human HEXA gene responsible for Tay-Sachs disease and for genotyping SNP alleles near the human p53 tumor suppressor gene. In each case, the final probe signals were normalized against total single-stranded DNA generated in the same reaction. Normalization reduces the coefficient of variation among replicates from 17.22% to as little as 2.78% and permits endpoint genotyping with >99.7% accuracy. These assays are robust because they are consistent over a wide range of input DNA concentrations and give the same results regardless of how many cycles of linear amplification have elapsed. The method is also sufficiently powerful to distinguish between samples with a 1:1 ratio of two alleles from samples comprised of 2:1 and 1:2 ratios of the same alleles. CONCLUSION: SNP genotyping via Two-Temperature LATE-PCR takes place in a homogeneous closed-tube format and uses a single hybridization probe per SNP site. These assays are convenient, rely on endpoint analysis, improve the options for construction of multiplex assays, and are suitable for SNP genotyping, mutation scanning, and detection of DNA duplication or deletions

    Properties of the Compact HII Region Complex G-0.02-0.07

    Get PDF
    We present new extinction maps and high-resolution Paschen alpha images of G-0.02-0.07, a complex of compact HII regions located adjacent to the M-0.02-0.07 giant molecular cloud, 6 parsecs in projection from the center of the Galaxy. These HII regions, which lie in projection just outside the boundary of the Sgr A East supernova remnant, represent one of the most recent episodes of star formation in the central parsecs of the Galaxy. The 1.87 micron extinctions of regions A, B and C are almost identical, approximately 1.5 magnitudes. Region D, in contrast, has a peak 1.87 micron extinction of 2.3 magnitudes. Adopting the Nishiyama et al. (2008) extinction law, we find these extinctions correspond to visual extinctions of A_V = 44.5 and A_V = 70, respectively. The similar and uniform extinctions of regions A, B and C are consistent with that expected for foreground extinction in the direction of the Galactic center, suggesting that they lie at the front side of the M-0.02-0.07 molecular cloud. Region D is more compact, has a higher extinction and is thus suspected to be younger and embedded in a dense core in a compressed ridge on the western edge of this cloud.Comment: 21 pages, 11 figures, submitted to ApJ, comments welcom

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks

    Get PDF
    During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair. © 2014 Nakajima et al

    American Gut: an Open Platform for Citizen Science Microbiome Research

    Get PDF
    McDonald D, Hyde E, Debelius JW, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems. 2018;3(3):e00031-18
    corecore