780 research outputs found

    Increase of the Number of Detectable Gravitational Waves Signals due to Gravitational Lensing

    Full text link
    This article deals with the gravitational lensing (GL) of gravitational waves (GW). We compute the increase in the number of detected GW events due to GL. First, we check that geometrical optics is valid for the GW frequency range on which Earth-based detectors are sensitive, and that this is also partially true for what concerns the future space-based interferometer LISA. To infer this result, both the diffraction parameter and a cut-off frequency are computed. Then, the variation in the number of GW signals is estimated in the general case, and applied to some lens models: point mass lens and singular isothermal sphere (SIS profile). An estimation of the magnification factor has also been done for the softened isothermal sphere and for the King profile. The results appear to be strongly model-dependent, but in all cases the increase in the number of detected GW signals is negligible. The use of time delays among images is also investigated.Comment: Accepted for publication in General Relativity and Gravitatio

    The XMM-Newton Ω\Omega Project

    Full text link
    The abundance of high-redshift galaxy clusters depends sensitively on the matter density \OmM and, to a lesser extent, on the cosmological constant Λ\Lambda. Measurements of this abundance therefore constrain these fundamental cosmological parameters, and in a manner independent and complementary to other methods, such as observations of the cosmic microwave background and distance measurements. Cluster abundance is best measured by the X-ray temperature function, as opposed to luminosity, because temperature and mass are tightly correlated, as demonstrated by numerical simulations. Taking advantage of the sensitivity of XMM-Newton, our Guaranteed Time program aims at measuring the temperature of the highest redshift (z>0.4) SHARC clusters, with the ultimate goal of constraining both \OmM and Λ\Lambda.Comment: To appear in the Proceedings of the XXI Moriond Conference: Galaxy Clusters and the High Redshift Universe Observed in X-rays, edited by D. Neumann, F. Durret, & J. Tran Thanh Va

    Science with Simbol-X

    Full text link
    Simbol-X is a French-Italian mission, with a participation of German laboratories, for X-ray astronomy in the wide 0.5-80 keV band. Taking advantage of emerging technology in mirror manufacturing and spacecraft formation flying, Simbol-X will push grazing incidence imaging up to ~80 keV, providing an improvement of roughly three orders of magnitude in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. This will open a new window in X-ray astronomy, allowing breakthrough studies on black hole physics and census and particle acceleration mechanisms. We describe briefly the main scientific goals of the Simbol-X mission, giving a few examples aimed at highlighting key issues of the Simbol-X design.Comment: Proc. of the workshop "Simbol-X: The hard X-ray universe in focus", Bologna 14-16 May, 200

    Evolution of Iron Kα_{\alpha} Line Emission in the Black Hole Candidate GX 339-4

    Full text link
    GX 339-4 was regularly monitored with RXTE during a period (in 1999) when its X-ray flux decreased significantly (from 4.2×1010\times 10^{-10} erg cm2s1^{-2} s^{-1} to 7.6×1012\times 10^{-12} erg cm2^{-2}s1^{-1} in the 3--20 keV band), as the source settled into the ``off state''. Our spectral analysis revealed the presence of a prominent iron Kα_{\alpha} line in the observed spectrum of the source for all observations. The line shows an interesting evolution: it is centered at \sim6.4 keV when the measured flux is above 5×1011\times 10^{-11} erg cm2s1^{-2} s^{-1}, but is shifted to \sim6.7 keV at lower fluxes. The equivalent width of the line appears to increase significantly toward lower fluxes, although it is likely to be sensitive to calibration uncertainties. While the fluorescent emission of neutral or mildly ionized iron atoms in the accretion disk can perhaps account for the 6.4 keV line, as is often invoked for black hole candidates, it seems difficult to understand the 6.7 keV line with this mechanism, because the disk should be less ionized at lower fluxes (unless its density changes drastically). On the other hand, the 6.7 keV line might be due to recombination cascade of hydrogen or helium like iron ions in an optically thin, highly ionized plasma. We discuss the results in the context of proposed accretion models.Comment: 18 pages, 2 figures, accepted for publication in the ApJ in v552n2p May 10, 2001 issu

    GRB030406 an extremely hard burst outside of the INTEGRAL field of view

    Get PDF
    Using the IBIS Compton mode, the INTEGRAL satellite is able to detect and localize bright and hard GRBs, which happen outside of the nominal INTEGRAL telescopes field of view. We have developed a method of analyzing such INTEGRAL data to obtain the burst location and spectra. We present the results for the case of GRB030406. The burst is localized with the Compton events, and the location is consistent with the previous Interplanetary Network position. A spectral analysis is possible with the detailed modeling of the detector response for such a far off-axis source with the offset of 36.9 ^\circ. The average spectrum of the burst is extremely hard: the photon index above 400 \kev is -1.7, with no evidence of a break up to 1.1 \mev at 90% confidence level.Comment: Astronomy and Astrophysics in pres

    Evaluation of neck circumference as a predictor of elevated cardiometabolic risk outcomes in 5–8-year-old Brazilian children

    Get PDF
    Background: Childhood overweight and obesity is a global health problem that continues to worsen in many low- and middle-income countries. Low-cost measurements for monitoring overweight and relative metabolic risk, such as neck circumference (NC), should be evaluated in different populations and age groups. / Aim: To test associations of NC and BMI with cardiometabolic parameters in 5-8-year-old Brazilian children. / Methods: This cross-sectional study carried out from 2004–2006 measured height, weight and NC by anthropometry, and estimated fat and fat-free mass by bioelectrical impedance. Cardiometabolic risk factors assessed were systolic and diastolic blood pressure, high- and low-density lipoprotein cholesterol, triglycerides, and homeostatic model assessment of insulin resistance (HOMA). Associations of NC and BMI with cardiometabolic risk factors were tested using multiple regression and precision-recall plot analysis. / Results: Analyses included 371 children (52% female). NC associated positively with BMI, fat mass, and fat-free mass, and with systolic blood pressure and HOMA following adjustment for age in sex-stratified multiple regression models. However, the latter relationships largely disappeared following adjustment for BMI. Area under the curve for NC or BMI in association with systolic blood pressure or HOMA >90th percentile was low in the pooled sample, indicating poor classifier performance. / Conclusions: NC and BMI demonstrated similar associations with cardiometabolic risk factors, although NC mostly did not correlate with risk factors independently of BMI. In contrast to previous studies, NC was a poor classifier of cardiometabolic risk factors in children. The association of NC with both fat and fat-free mass may aid in explaining its poor performance

    Characterizing a new class of variability in GRS 1915+105 with simultaneous INTEGRAL/RXTE observations

    Full text link
    We report on the analysis of 100 ks INTEGRAL observations of the Galactic microquasar GRS 1915+105. We focus on INTEGRAL Revolution number 48 when the source was found to exhibit a new type of variability as preliminarily reported in Hannikainen et al. (2003). The variability pattern, which we name ξ\xi, is characterized by a pulsing behaviour, consisting of a main pulse and a shorter, softer, and smaller amplitude precursor pulse, on a timescale of 5 minutes in the JEM-X 3-35 keV lightcurve. We also present simultaneous RXTE data. From a study of the individual RXTE/PCA pulse profiles we find that the rising phase is shorter and harder than the declining phase, which is opposite to what has been observed in other otherwise similar variability classes in this source. The position in the colour-colour diagram throughout the revolution corresponds to State A (Belloni et al. 2000) but not to any previously known variability class. We separated the INTEGRAL data into two subsets covering the maxima and minima of the pulses and fitted the resulting two broadband spectra with a hybrid thermal--non-thermal Comptonization model. The fits show the source to be in a soft state characterized by a strong disc component below ~6 keV and Comptonization by both thermal and non-thermal electrons at higher energies.Comment: Accepted for publication in A&A. 11 pages, 10 figures, 4 in colour. Original figures can be found at http://www.astro.helsinki.fi/~diana/grs1915_rev48. Author affiliations correcte

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Improved Limits on B0B^{0} decays to invisible (+γ)(+\gamma) final states

    Get PDF
    We establish improved upper limits on branching fractions for B0 decays to final States 10 where the decay products are purely invisible (i.e., no observable final state particles) and for final states where the only visible product is a photon. Within the Standard Model, these decays have branching fractions that are below the current experimental sensitivity, but various models of physics beyond the Standard Model predict significant contributions for these channels. Using 471 million BB pairs collected at the Y(4S) resonance by the BABAR experiment at the PEP-II e+e- storage ring at the SLAC National Accelerator Laboratory, we establish upper limits at the 90% confidence level of 2.4x10^-5 for the branching fraction of B0-->Invisible and 1.7x10^-5 for the branching fraction of B0-->Invisible+gammaComment: 8 pages, 3 postscript figures, submitted to Phys. Rev. D (Rapid Communications
    corecore