119 research outputs found
In-depth study of moderately young but extremely red, very dusty substellar companion HD206893B
Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The substellar companion HD206893b has recently been discovered by direct imaging of its disc-bearing host star with the SPHERE instrument. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multiinstrument follow-up of its host star. We obtain a R=30 spectrum from 0.95 to 1.64 micron of the companion and additional photometry at 2.11 and 2.25 micron. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6MJup (2MJup) at 0.5" for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf...Peer reviewedFinal Accepted Versio
First light of the VLT planet finder SPHERE. I. Detection and characterization of the sub-stellar companion GJ 758 B
GJ758 B is a brown dwarf companion to a nearby (15.76 pc) solar-type,
metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with
Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being
the coldest (~600K) companion ever directly imaged around a neighboring star.
We present new high-contrast data obtained during the commissioning of the
SPHERE instrument at the VLT. The data was obtained in Y-, J-, H-, and Ks-bands
with the dual-band imaging (DBI) mode of IRDIS, providing a broad coverage of
the full near-infrared (near-IR) range at higher contrast and better spectral
sampling than previously reported. In this new set of high-quality data, we
report the re-detection of the companion, as well as the first detection of a
new candidate closer-in to the star. We use the new 8 photometric points for an
extended comparison of GJ758 B with empirical objects and 4 families of
atmospheric models. From comparison to empirical object, we estimate a T8
spectral type, but none of the comparison object can accurately represent the
observed near-IR fluxes of GJ758 B. From comparison to atmospheric models, we
attribute a Teff = 600K 100K, but we find that no atmospheric model can
adequately fit all the fluxes of GJ758 B. The photometry of the new candidate
companion is broadly consistent with L-type objects, but a second epoch with
improved photometry is necessary to clarify its status. The new astrometry of
GJ758 B shows a significant proper motion since the last epoch. We use this
result to improve the determination of the orbital characteristics using two
fitting approaches, Least-Square Monte Carlo and Markov Chain Monte Carlo.
Finally, we analyze the sensitivity of our data to additional closer-in
companions and reject the possibility of other massive brown dwarf companions
down to 4-5 AU. [abridged]Comment: 20 pages, 15 figures. Accepted for publication in A&
First light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Tel and HD 1160 revisited
[Abridged] Context. The young systems PZ Tel and HD 1160, hosting known
low-mass companions, were observed during the commissioning of the new planet
finder SPHERE with several imaging and spectroscopic modes. Aims. We aim to
refine the physical properties and architecture of both systems. Methods. We
use SPHERE commissioning data and REM observations, as well as literature and
unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2.
Results. We derive new photometry and confirm the nearly daily photometric
variability of PZ Tel A. Using literature data spanning 38 yr, we show that the
star also exhibits a long-term variability trend. The 0.63-3.8 mic SED of PZ
Tel B allows us to revise its properties: spectral type M7+/-1, Teff=2700+/-100
K, log(g)<4.5 dex, log(L/L_Sun)=-2.51+/-0.10 dex, and mass 38-72 MJ. The 1-3.8
mic SED of HD 1160 B suggests a massive brown dwarf or a low-mass star with
spectral type M5.5-7.0, Teff=3000+/-100 K, [M/H]=-0.5-0.0 dex,
log(L/L_Sun)=-2.81+/-0.10 dex, and mass 39-168 MJ. We confirm the deceleration
and high eccentricity (e>0.66) of PZ Tel B. For e<0.9, the inclination,
longitude of the ascending node, and time of periastron passage are well
constrained. The system is seen close to an edge-on geometry. We reject other
brown dwarf candidates outside 0.25" for both systems, and massive giant
planets (>4 MJ) outside 0.5" for the PZ Tel system. We also show that K1-K2
color can be used with YJH low-resolution spectra to identify young L-type
companions, provided high photometric accuracy (<0.05 mag) is achieved.
Conclusions. SPHERE opens new horizons in the study of young brown dwarfs and
giant exoplanets thanks to high-contrast imaging capabilities at optical and
near-infrared wavelengths, as well as high signal-to-noise spectroscopy in the
near-infrared from low (R~30-50) to medium resolutions (R~350).Comment: 25 pages, 23 figures, accepted for publication in A&A on Oct. 13th,
2015; version including language editing. Typo on co-author name on astroph
page corrected, manuscript unchange
Post conjunction detection of Pictoris b with VLT/SPHERE
With an orbital distance comparable to that of Saturn in the solar system,
\bpic b is the closest (semi-major axis \,9\,au) exoplanet that has
been imaged to orbit a star. Thus it offers unique opportunities for detailed
studies of its orbital, physical, and atmospheric properties, and of
disk-planet interactions. With the exception of the discovery observations in
2003 with NaCo at the Very Large Telescope (VLT), all following astrometric
measurements relative to \bpic have been obtained in the southwestern part of
the orbit, which severely limits the determination of the planet's orbital
parameters. We aimed at further constraining \bpic b orbital properties using
more data, and, in particular, data taken in the northeastern part of the
orbit.
We used SPHERE at the VLT to precisely monitor the orbital motion of beta
\bpic b since first light of the instrument in 2014. We were able to monitor
the planet until November 2016, when its angular separation became too small
(125 mas, i.e., 1.6\,au) and prevented further detection. We redetected \bpic b
on the northeast side of the disk at a separation of 139\,mas and a PA of
30 in September 2018. The planetary orbit is now well constrained.
With a semi-major axis (sma) of au (1 ), it
definitely excludes previously reported possible long orbital periods, and
excludes \bpic b as the origin of photometric variations that took place in
1981. We also refine the eccentricity and inclination of the planet. From an
instrumental point of view, these data demonstrate that it is possible to
detect, if they exist, young massive Jupiters that orbit at less than 2 au from
a star that is 20 pc away.Comment: accepted by A&
Discovery of a brown dwarf companion to the star HIP 64892
We report the discovery of a bright, brown dwarf companion to the star HIP
64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a
B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB
association. The measured angular separation of the companion
(") corresponds to a projected distance of AU. We
observed the target with the dual-band imaging and long-slit spectroscopy modes
of the IRDIS imager to obtain its SED and astrometry. In addition, we
reprocessed archival NACO L-band data, from which we also recover the
companion. Its SED is consistent with a young (<30 Myr), low surface gravity
object with a spectral type of M9. From comparison with the
BT-Settl atmospheric models we estimate an effective temperature of
K, and comparison of the companion photometry
to the COND evolutionary models yields a mass of M at
the estimated age of Myr for the system. HIP 64892 is a rare
example of an extreme-mass ratio system () and will be useful for
testing models relating to the formation and evolution of such low-mass
objects.Comment: 12 pages, 11 figures, accepted for publication in A&
- …