31 research outputs found

    Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients

    Get PDF
    Mutations in the filamin C gene (FLNC) cause a myofibrillar myopathy (MFM), morphologically characterized by focal myofibrillar destruction and abnormal accumulation of several proteins within skeletal muscle fibres. We studied 31 patients from four German families to evaluate the phenotype of filaminopathy. All patients harboured the same p.W2710X mutation in FLNC. Haplotype analysis suggested a founder mutation in these German filaminopathy families. The mean age at onset of clinical symptoms was 44 +/− 6 years (range, 24-57 years). Slowly progressive muscle weakness was mostly pronounced proximally, initially affecting the lower extremities and involving the upper extremities in the course of disease progression, similar to the distribution of weakness seen in limb-girdle muscular dystrophies (LGMD). Patients frequently developed respiratory muscle weakness. About one-third of the patients showed cardiac abnormalities comprising conduction blocks, tachycardia, diastolic dysfunction and left ventricular hypertrophy indicating a cardiac involvement in filaminopathy. Serum creatine kinase levels varied from normal up to 10-fold of the upper limit. Magnetic resonance imaging studies showed a rather homogenous pattern of muscle involvement in the lower extremities differing from that in other types of MFM. Myopathological features included perturbation of myofibrillar alignment, accumulation of granulofilamentous material similar to that seen in primary desminopathies and abnormal intracellular protein deposits typical of MFM. Decreased activities of oxidative enzymes and fibre hypertrophy seem to be early features, whereas dystrophic changes were present in advanced stages of filaminopathy. Rimmed vacuoles were detected in only a few cases. The intracellular aggregates were composed of a variety of proteins including filamin C, desmin, myotilin, Xin, dystrophin and sarcoglycans. Therapy is so far limited to symptomatic treatment. The German filaminopathy cohort, the largest group of patients studied so far, shares phenotypic features with LGMD and presents with characteristic histopathological findings of MF

    Global carbon budget 2019

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019)

    Immobilization Impairs Tactile Perception and Shrinks Somatosensory Cortical Maps

    Get PDF
    Use is a major factor driving plasticity of cortical processing and cortical maps. As demonstrated of blind Braille readers and musicians, long-lasting and exceptional usage of the fingers results in the development of outstanding sensorimotor skills and in expansions of the cortical finger representations. However, how periods of disuse affect cortical representations and perception in humans remains elusive. Here, we report that a few weeks of hand and arm immobilization by cast wearing significantly reduced hand use and impaired tactile acuity, associated with reduced activation of the respective finger representations in the somatosensory cortex (SI), measured by functional magnetic resonance imaging. Hemodynamic responses in the SI correlated positively with hand-use frequency and negatively with discrimination thresholds, indicating that reduced activation was most prominent in subjects with severe perceptual impairment. We found, strikingly, compensatory effects on the contralateral, healthy hand consisting of improved perceptual performance compared to healthy controls. Two to three weeks after cast removal, perceptual and cortical changes recovered, whereas tactile acuity on the healthy side remained superior to that on the formerly immobilized side. These findings suggest that brief periods of reduced use of a limb have overt consequences and thus constitute a significant driving force of brain organization equivalent to enhanced use

    Global carbon budget 2019

    No full text
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019)

    Global carbon budget 2019

    No full text
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019)

    Exome-wide association study reveals novel psoriasis susceptibility locus at TNFSF15 and rare protective alleles in genes contributing to type I IFN signalling

    Get PDF
    Psoriasis is a common inflammatory skin disorder for which multiple genetic susceptibility loci have been identified, but few resolved to specific functional variants. In this study, we sought to identify common and rare psoriasis-associated gene-centric variation. Using exome arrays we genotyped four independent cohorts, totalling 11 861 psoriasis cases and 28 610 controls, aggregating the dataset through statistical meta-analysis. Single variant analysis detected a previously unreported risk locus at TNFSF15 (rs6478108; P = 1.50 x 10(-8), OR = 1.10), and association of common protein-altering variants at 11 loci previously implicated in psoriasis susceptibility. We validate previous reports of protective low-frequency protein-altering variants within IFIH1 (encoding an innate antiviral receptor) and TYK2 (encoding a Janus kinase), in each case establishing a further series of protective rare variants (minor allele frequency amp;lt; 0.01) via gene-wide aggregation testing (IFIH1: p(burden) = 2.53 x 10(-7), OR = 0.707; TYK2: p(burden) = 6.17 x 10(-4), OR = 0.744). Both genes play significant roles in type I interferon (IFN) production and signalling. Several of the protective rare and low-frequency variants in IFIH1 and TYK2 disrupt conserved protein domains, highlighting potential mechanisms through which their effect may be exerted.Funding Agencies|Medical Research Council (MRC) Stratified Medicine award [MR/L011808/1]; Psoriasis Association [RG2/10]; MRC Clinical Training Fellowship [MR/L001543/1]; NIHR Biomedical Research Centre based at Guys and St Thomas NHS Foundation Trust; Kings College London; NIHR Biomedical Research Centre at South London; Maudsley NHS Foundation Trust; Maudsley Charity [980]; Guys and St Thomass Charity [STR130505]; MRC grant [G0000934]; Wellcome Trust grant [068545/Z/02]; German Federal Ministry of Education and Research (BMBF) [01ZX1306A]; PopGen Biobank (Kiel, Germany) [01EY1103]; Helmholtz Zentrum Munchen - German Research Center for Environmental Health; BMBF; State of Bavaria; Munich Center of Health Sciences (MC Health); Ludwig-Maximilians-Universitat, of LMUinnovativ; BMBF [01ZZ9603, 01ZZ0103, 01ZZ0403, 03152061A, 03Z1CN22]; Ministry of Cultural Affairs; Social Ministry of the Federal State of Mecklenburg -West Pomerania; network Greifswald Approach to Individualized Medicine (GANI MED); Federal State of Mecklenburg West Pomerania; BMBF Metarthros grant [01EC1407A]; National Institutes of Health [R01AR042742, R01AR050511, R01AR054966, R01AR063611, R01AR065183]; GAIN award from the Foundation for the National Institutes of Health; Ann Arbor Veterans Affairs Hospital; Taubman Medical Research Institute; International Psoriasis Council</p

    Literaturverzeichnis

    No full text
    corecore