56 research outputs found

    An Investigation of the Effectiveness of Ignition Sparks

    Get PDF
    The effectiveness of ignition sparks was determined by measuring the volume (or mass) of hydrogen and of oxygen which combines at low pressures. The sparks were generated by a magneto and an ignition spark coil. It was found that with constant energy the amount of reaction increases as the capacitance component of the spark increases. The use of a series spark gap may decrease or increase the amount of reaction, the effect depending upon the amount and distribution of capacitance in the circuit. So far as the work has progressed, it has been found that sparks reported by other investigations as being most efficient for igniting lean mixtures cause the largest amount of reaction. Differences between the amount of reaction with a magneto spark and an ignition spark coil were noted. The method appears to offer a means of determining the most efficient spark generator for internal-combustion engines as well as determining a relation between the character of spark, energy, and effectiveness in igniting inflammable mixtures

    Taxonomic status of the extinct Canary Islands Oystercatcher Haematopus meadewaldoi

    Get PDF
    Mitochondrial genes were sequenced from four specimens of the extinct Canary Islands Oystercatcher Haematopus meadewaldoi and compared with African Oystercatcher Haematopus moquini, Eurasian Oystercatcher Haematopus ostralegus and an old unidentified extralimital ‘black’ oystercatcher specimen from The Gambia. At these loci, H. meadewaldoi was approximately 99.65% identical to multiple Eurasian Oystercatcher samples and in phylogenetic trees fell within the range of genetic variation observed in that species. The mystery Gambian bird was resolved as an extralimital H. moquini. We conclude that H. meadewaldoi was most likely a recently diverged melanistic morph or subspecies of H.ostralegus, although further genomic studies will be required to determine whether there has been a period of isolation followed by introgression

    Genome-wide association analysis and fine mapping of NT-proBNP level provide novel insight into the role of the MTHFR-CLCN6-NPPA-NPPB gene cluster

    Get PDF
    High blood concentration of the N-terminal cleavage product of the B-type natriuretic peptide (NT-proBNP) is strongly associated with cardiac dysfunction and is increasingly used for heart failure diagnosis. To identify genetic variants associated with NT-proBNP level, we performed a genome-wide association analysis in 1325 individuals from South Tyrol, Italy, and followed up the most significant results in 1746 individuals from two German population-based studies. A genome-wide significant signal in the MTHFR-CLCN6-NPPA-NPPB gene cluster was replicated, after correction for multiple testing (replication one-sided P-value = 8.4 × 10−10). A conditional regression analysis of 128 single-nucleotide polymorphisms in the region of interest identified novel variants in the CLCN6 gene as independently associated with NT-proBNP. In this locus, four haplotypes were associated with increased NT-proBNP levels (haplotype-specific combined P-values from 8.3 × 10−03 to 9.3 × 10−11). The observed increase in the NT-proBNP level was proportional to the number of haplotype copies present (i.e. dosage effect), with an increase associated with two copies that varied between 20 and 100 pg/ml across populations. The identification of novel variants in the MTHFR-CLCN6-NPPA-NPPB cluster provides new insights into the biological mechanisms of cardiac dysfunction

    Interest Groups, NGOs or Civil Society Organisations? The Framing of Non-State Actors in the EU

    Get PDF
    Scholars have used varying terminology for describing non-state entities seeking to influence public policy or work with the EU’s institutions. This paper argues that the use of this terminology is not and should not be random, as different ‘frames’ come with different normative visions about the role(s) of these entities in EU democracy. A novel bibliometric analysis of 780 academic publications between 1992 and 2020 reveals that three frames stand out: The interest group frame, the NGO frame, as well as the civil society organisation frame; a number of publications also use multiple frames. This article reveals the specific democratic visions contained in these frames, including a pluralist view for interest groups; a governance view for NGOs as ‘third sector’ organisations, and participatory and deliberative democracy contributions for civil society organisations. The use of these frames has dynamically changed over time, with ‘interest groups’ on the rise. The results demonstrate the shifting focus of studies on non-state actors in the EU and consolidation within the sub-field; the original visions of European policy-makers emerging from the 2001 White Paper on governance may only partially come true

    Financial feasibility of end-user designed rainwater harvesting and greywater reuse systems for high water use households

    Get PDF
    © 2017, The Author(s). Water availability pressures, competing end-uses and sewers at capacity are all drivers for change in urban water management. Rainwater harvesting (RWH) and greywater reuse (GWR) systems constitute alternatives to reduce drinking water usage and in the case of RWH, reduce roof runoff entering sewers. Despite the increasing popularity of installations in commercial buildings, RWH and GWR technologies at a household scale have proved less popular, across a range of global contexts. For systems designed from the top-down, this is often due to the lack of a favourable cost-benefit (where subsidies are unavailable), though few studies have focused on performing full capital and operational financial assessments, particularly in high water consumption households. Using a bottom-up design approach, based on a questionnaire survey with 35 households in a residential complex in Bucaramanga, Colombia, this article considers the initial financial feasibility of three RWH and GWR system configurations proposed for high water using households (equivalent to >203L per capita per day). A full capital and operational financial assessment was performed at a more detailed level for the most viable design using historic rainfall data. For the selected configuration (‘Alt 2’), the estimated potable water saving was 44% (equivalent to 131m3/year) with a rate of return on investment of 6.5% and an estimated payback period of 23years. As an initial end-user-driven design exercise, these results are promising and constitute a starting point for facilitating such approaches to urban water management at the household scale

    Competitive Benchmarking: An IS Research Approach to Address Wicked Problems with Big Data and Analytics

    Get PDF
    Wicked problems like sustainable energy and financial market stability are societal challenges that arise from complex socio-technical systems in which numerous social, economic, political, and technical factors interact. Understanding and mitigating them requires research methods that scale beyond the traditional areas of inquiry of Information Systems (IS) “individuals, organizations, and markets” and that deliver solutions in addition to insights. We describe an approach to address these challenges through Competitive Benchmarking (CB), a novel research method that helps interdisciplinary research communities to tackle complex challenges of societal scale by using different types of data from a variety of sources such as usage data from customers, production patterns from producers, public policy and regulatory constraints, etc. for a given instantiation. Further, the CB platform generates data that can be used to improve operational strategies and judge the effectiveness of regulatory regimes and policies. We describe our experience applying CB to the sustainable energy challenge in the Power Trading Agent Competition (Power TAC) in which more than a dozen research groups from around the world jointly devise, benchmark, and improve IS-based solutions

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore