147 research outputs found
Cooperation of different neuronal systems during hand sign recognition.
Hand signs with symbolic meaning can often be utilized more successfully than words to communicate an intention; however, the underlying brain mechanisms are undefined. The present study using magnetoencephalography (MEG) demonstrates that the primary visual, mirror neuron, social recognition and object recognition systems are involved in hand sign recognition. MEG detected well-orchestrated multiple brain regional electrical activity among these neuronal systems. During the assessment of the meaning of hand signs, the inferior parietal, superior temporal sulcus (STS) and inferior occipitotemporal regions were simultaneously activated. These three regions showed similar time courses in their electrical activity, suggesting that they work together during hand sign recognition by integrating information in the ventral and dorsal pathways through the STS. The results also demonstrated marked right hemispheric predominance, suggesting that hand expression is processed in a manner similar to that in which social signs, such as facial expressions, are processed
Age-related changes in matching novel objects across viewpoints
Peer reviewedPreprin
The eye contact effect: mechanisms and development
The ‘eye contact effect’ is the phenomenon that perceived eye contact with another human face modulates certain aspects of the concurrent and/or immediately following cognitive processing. In addition, functional imaging studies in adults have revealed that eye contact can modulate activity in structures in the social brain network, and developmental studies show evidence for preferential orienting towards, and processing of, faces with direct gaze from early in life. We review different theories of the eye contact effect and advance a ‘fast-track modulator’ model. Specifically, we hypothesize that perceived eye contact is initially detected by a subcortical route, which then modulates the activation of the social brain as it processes the accompanying detailed sensory information
Why I tense up when you watch me: inferior parietal cortex mediates an audience’s influence on motor performance
The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants’ performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others’ actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one’s own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output
Common cortical responses evoked by appearance, disappearance and change of the human face
<p>Abstract</p> <p>Background</p> <p>To segregate luminance-related, face-related and non-specific components involved in spatio-temporal dynamics of cortical activations to a face stimulus, we recorded cortical responses to face appearance (Onset), disappearance (Offset), and change (Change) using magnetoencephalography.</p> <p>Results</p> <p>Activity in and around the primary visual cortex (V1/V2) showed luminance-dependent behavior. Any of the three events evoked activity in the middle occipital gyrus (MOG) at 150 ms and temporo-parietal junction (TPJ) at 250 ms after the onset of each event. Onset and Change activated the fusiform gyrus (FG), while Offset did not. This FG activation showed a triphasic waveform, consistent with results of intracranial recordings in humans.</p> <p>Conclusion</p> <p>Analysis employed in this study successfully segregated four different elements involved in the spatio-temporal dynamics of cortical activations in response to a face stimulus. The results show the responses of MOG and TPJ to be associated with non-specific processes, such as the detection of abrupt changes or exogenous attention. Activity in FG corresponds to a face-specific response recorded by intracranial studies, and that in V1/V2 is related to a change in luminance.</p
Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach
Background: In this study, we quantified age-related changes in the time-course of face processing
by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our
approach does not rely on peak measurements and can provide a more sensitive measure of
processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded
discrimination task between two faces. The phase spectrum of these faces was manipulated
parametrically to create pictures that ranged between pure noise (0% phase information) and the
undistorted signal (100% phase information), with five intermediate steps.
Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was
higher, in younger than older observers. ERPs from each subject were entered into a single-trial
general linear regression model to identify variations in neural activity statistically associated with
changes in image structure. The earliest age-related ERP differences occurred in the time window
of the N170. Older observers had a significantly stronger N170 in response to noise, but this age
difference decreased with increasing phase information. Overall, manipulating image phase
information had a greater effect on ERPs from younger observers, which was quantified using a
hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus
parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at
multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower
processing in older observers starting around 120 ms after stimulus onset. This age-related delay
increased over time to reach a maximum around 190 ms, at which latency younger observers had
around 50 ms time lead over older observers.
Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual
system sensitivity to image structure, the current study demonstrates that older observers
accumulate face information more slowly than younger subjects. Additionally, the N170 appears to
be less face-sensitive in older observers
Behavioral states may be associated with distinct spatial patterns in electrocorticogram
To determine if behavioral states are associated with unique spatial electrocorticographic (ECoG) patterns, we obtained recordings with a microgrid electrode array applied to the cortical surface of a human subject. The array was constructed with the intent of extracting maximal spatial information by optimizing interelectrode distances. A 34-year-old patient with intractable epilepsy underwent intracranial ECoG monitoring after standard methods failed to reveal localization of seizures. During the 8-day period of invasive recording, in addition to standard clinical electrodes a square 1 × 1 cm microgrid array with 64 electrodes (1.25 mm separation) was placed on the right inferior temporal gyrus. Careful review of video recordings identified four extended naturalistic behaviors: reading, conversing on the telephone, looking at photographs, and face-to-face interactions. ECoG activity recorded with the microgrid that corresponded to these behaviors was collected and ECoG spatial patterns were analyzed. During periods of ECoG selected for analysis, no electrographic seizures or epileptiform patterns were present. Moments of maximal spatial variance are shown to cluster by behavior. Comparisons between conditions using a permutation test reveal significantly different spatial patterns for each behavior. We conclude that ECoG recordings obtained on the cortical surface with optimal high spatial frequency resolution reveal distinct local spatial patterns that reflect different behavioral states, and we predict that similar patterns will be found in many if not most cortical areas on which a microgrid is placed
Cortical activation to action perception is associated with action production abilities in young infants
The extent to which perception and action share common neural processes is much debated in cognitive neuroscience. Taking a developmental approach to this issue allows us to assess whether perceptual processing develops in close association with the emergence of related action skills within the same individual. The current study used functional near-infrared spectroscopy (fNIRS) to investigate the perception of human action in 4- to 6-month-old human infants. In addition, the infants' manual dexterity was assessed using the fine motor component of The Mullen Scales of Early Learning and an in-house developed Manual Dexterity task. Results show that the degree of cortical activation, within the posterior superior temporal sulcus—temporoparietal junction (pSTS-TPJ) region, to the perception of manual actions in individual infants correlates with their own level of fine motor skills. This association was not fully explained by either measures of global attention (i.e., looking time) or general developmental stage. This striking concordance between the emergence of motor skills and related perceptual processing within individuals is consistent with experience-related cortical specialization in the developing brain
- …