287 research outputs found

    Extrapolation of DEM simulations to large time scale. Application to the mixing of powder in a conical screw mixer

    Get PDF
    International audienceThe paper proposes an original algorithm which allows a long time scale extrapolation of DEM results at a very low computational cost. This algorithm can be adapted to any periodic processes. In this study, it is applied to the mixing process of powders within a conical screw mixer. The results are then compared with long time DEM simulations. It appears that this method is able to predict the DEM results with a very good accuracy

    Optimal computation with non-unitary quantum walks

    Get PDF
    Quantum versions of random walks on the line and the cycle show a quadratic improvement over classical random walks in their spreading rates and mixing times, respectively. Non-unitary quantum walks can provide a useful optimisation of these properties, producing a more uniform distribution on the line, and faster mixing times on the cycle. We investigate the interplay between quantum and random dynamics by comparing the resources required, and examining numerically how the level of quantum correlations varies during the walk. We show numerically that the optimal non-unitary quantum walk proceeds such that the quantum correlations are nearly all removed at the point of the final measurement. This requires only O(logT) random bits for a quantum walk of T steps

    Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions

    Get PDF
    Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate production. T. cacao is seriously affected by pests and fungal diseases, responsible for more than 40% yield losses and quality improvement, nutritional and organoleptic, is also important for consumers. An international collaboration was formed to develop an EST genomic resource database for cacao. Fifty-six cDNA libraries were constructed from different organs, different genotypes and different environmental conditions. A total of 149,650 valid EST sequences were generated corresponding to 48,594 unigenes, 12,692 contigs and 35,902 singletons. A total of 29,849 unigenes shared significant homology with public sequences from other species. Gene Ontology (GO) annotation was applied to distribute the ESTs among the main GO categories. A specific information system (ESTtik) was constructed to process, store and manage this EST collection allowing the user to query a database. To check the representativeness of our EST collection, we looked for the genes known to be involved in two different metabolic pathways extensively studied in other plant species and important for T. cacao qualities: the flavonoid and the terpene pathways. Most of the enzymes described in other crops for these two metabolic pathways were found in our EST collection. A large collection of new genetic markers was provided by this ESTs collection. This EST collection displays a good representation of the T. cacao transcriptome, suitable for analysis of biochemical pathways based on oligonucleotide microarrays derived from these ESTs. It will provide numerous genetic markers that will allow the construction of a high density gene map of T. cacao. This EST collection represents a unique and important molecular resource for T. cacao study and improvement, facilitating the discovery of candidate genes for important T. cacao trait variation. (Résumé d'auteur

    Interactome Analysis Of The Human Respiratory Syncytial Virus Rna Polymerase Complex Identifies Protein Chaperones As Important Cofactors That Promote L-protein Stability And Rna Synthesis

    Get PDF
    The human respiratory syncytial virus (HRSV) core viral RNA polymerase comprises the large polymerase protein (L) and its cofactor, the phosphoprotein (P), which associate with the viral ribonucleoprotein complex to replicate the genome and, together with the M2-1 protein, transcribe viral mRNAs. While cellular proteins have long been proposed to be involved in the synthesis of HRSV RNA by associating with the polymerase complex, their characterization has been hindered by the difficulty of purifying the viral polymerase from mammalian cell culture. In this study, enhanced green fluorescent protein (EGFP)-tagged L-and P-protein expression was coupled with high-affinity anti-GFP antibody-based immunoprecipitation and quantitative proteomics to identify cellular proteins that interacted with either the L-or the P-proteins when expressed as part of a biologically active viral RNP. Several core groups of cellular proteins were identified that interacted with each viral protein including, in both cases, protein chaperones. Ablation of chaperone activity by using small-molecule inhibitors confirmed previously reported studies which suggested that this class of proteins acted as positive viral factors. Inhibition of HSP90 chaperone function in the current study showed that HSP90 is critical for L-protein function and stability, whether in the presence or absence of the P-protein. Inhibition studies suggested that HSP70 also disrupts virus biology and might help the polymerase remodel the nucleocapsid to allow RNA synthesis to occur efficiently. This indicated a proviral role for protein chaperones in HRSV replication and demonstrates that the function of cellular proteins can be targeted as potential therapeutics to disrupt virus replication. IMPORTANCE Human respiratory syncytial virus (HRSV) represents a major health care and economic burden, being the main cause of severe respiratory infections in infants worldwide. No vaccine or effective therapy is available. This study focused on identifying those cellular proteins that potentially interact specifically with the viral proteins that are central to virus replication and transcription, with a view to providing potential targets for the development of a specific, transient therapeutic which disrupts virus biology but prevents the emergence of resistance, while maintaining cell viability. In particular, protein chaperones (heat shock proteins 70 and 90), which aid protein folding and function, were identified. The mechanism by which these chaperones contribute to virus biology was tested, and this study demonstrates to the field that cellular protein chaperones may be required for maintaining the correct folding and therefore functionality of specific proteins within the virus replication complex.892917930Medical Research Council (MRC) [MR/K000276/1]MRC studentshipNIHRNIH [R01AI074903

    XIPE: the X-ray Imaging Polarimetry Explorer

    Full text link
    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus and two additional GPDs filled with pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 % at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil).Comment: 49 pages, 14 figures, 6 tables. Paper published in Experimental Astronomy http://link.springer.com/journal/1068

    The Bostrichidae of the Maltese Islands (Coleoptera)

    Get PDF
    The Bostrichidae of the Maltese Islands are reviewed. Ten species are recorded with certainty from this Archipelago, of which 6 namely, Trogoxylon impressum (Comolli, 1837), Amphicerus bimaculatus (A.G. Olivier, 1790), Heterobostrychus aequalis (Waterhouse, 1884), Sinoxylon unidentatum (Fabricius, 1801), Xyloperthella picea (A.G. Olivier, 1790) and Apate monachus Fabricius, 1775 are recorded for the first time. Two of the mentioned species (H. aequalis and S. unidentatum) are alien and recorded only on the basis of single captures and the possible establishment of these species is discussed. Earlier records of Scobicia pustulata (Fabricius, 1801) from Malta are incorrect and should be attributed to S. chevrieri (A. Villa & J.B. Villa, 1835). A zoogeographical analysis and an updated checklist of the 12 species of Bostrichidae recorded from the Maltese Islands and neighbouring Sicilian islands (Pantelleria, Linosa and Lampedusa) are also provided. Rhizopertha dominica (Fabricius, 1792) form granulipennis Lesne in Beeson & Bhatia, 1937 from Uttarakhand (northern India) was overlooked by almost all subsequent authors. Its history is summarized and the following new synonymy is established: Rhizopertha dominica (Fabricius, 1792) form granulipennis Lesne in Beeson & Bhatia, 1937 = Rhyzopertha dominica (Fabricius, 1792), syn. n. Finally, records of Amphicerus bimaculatus from Azerbaijan, of Bostrichus capucinus (Linnaeus, 1758) from Jordan and Syria, of Scobicia chevrieri from Jordan and Italy, of Xyloperthella picea from Italy, and of Apate monachus from Corsica (France) and Italy, are also provided.peer-reviewe
    corecore