222 research outputs found

    Reconstruction of Potential Flight Paths for the January 2015 Gimbal UAP

    Full text link
    The Gimbal video is a well-known footage of unidentified anomalous phenomena (UAP). Recorded in January 2015 off the coast of Florida by a U.S. Navy F/A-18F Super Hornet's targeting pod, the video shows an infrared-significant object skimming over clouds. Towards the end of the 34-second clip, the object appears to stop and rotate in mid-air. Naval aviators who participated in the event indicate that: (1) The UAP was within 10 nautical miles of the F/A-18F, (2) that, from the perspective of the aircrew's top-down radar display, it was seen to stop and reverse direction with no radius of turn, and (3) that the UAP was accompanied by a formation of 4-6 other unknown objects. Using data from the ATFLIR video, it is possible to reconstruct potential flight paths for the object as a function of distance. We show that, at the range provided by the aviators, potential flight paths align with eyewitness accounts: The object decelerates from a few hundred knots before rapidly reversing direction in a vertical U-turn. Such a maneuver would have been observed on the overhead radar display as an abrupt reversal of direction with no radius of turn. The highly anomalous flight path found at the range provided by the aircrew, along with the remarkable match between the reconstructed flight path, eyewitness recollections, and the object's rotation, raises intriguing questions about the nature of the object. This is especially the case because, at this distance, no wings or infrared signatures consistent with conventional means of propulsion are visible. An alternative hypothesis, which proposes that Gimbal shows infrared glare from the exhaust of a conventional jet aircraft viewed approximately tail-on 30 nautical miles from the F/A-18F, is also discussed. Our goal is to provide an overview of analyses of the Gimbal encounter, and encourage aeronautics professionals to share their expertise

    Influence de la couverture de neige de l'hémisphère nord sur la variabilité interannuelle du climat

    Get PDF
    La neige peut couvrir jusqu'à 40% des terres immergées de l'hémisphère Nord en hiver. De par son influence sur le bilan d'énergie en surface, elle constitue donc une source potentielle de variabilité et de prévisibilité climatique aux échelles mensuelles à saisonnières. Au-delà de ses effets locaux, la couverture neigeuse peut, à l'instar des surfaces océaniques, engendrer des téléconnexions et ainsi moduler le climat de régions plus lointaines. Cette thèse revisite plusieurs aspects des liens neige-climat en utilisant à la fois les jeux de données observées, les simulations réalisées pour le 4ème rapport du Groupe Intergouvernemental d'experts sur l'Evolution du Climat (GIEC), ainsi que le modèle atmosphérique ARPEGE-Climat pour réaliser des tests de sensibilité. L'influence de la neige eurasiatique/himalayenne sur la mousson indienne d'été, largement évoquée dans la littérature, est remise en cause par l'analyse des données observées étendues à la période 1967-2006. Toutefois, un prédicteur lié à la circulation atmosphérique de grande échelle sur le Pacifique Nord est proposé pour améliorer les prévisions saisonnières statistiques de la mousson indienne. L'influence des étendues de neige sibériennes en automne sur la variabilité atmosphérique hivernale de l'hémisphère Nord semble quant à elle plus robuste dans les observations. Si les modèles couplés du GIEC sont incapables de reproduire cette téléconnexion, les expériences de sensibilité réalisées avec ARPEGE-Climat confirment le mécanisme physique proposé dans la littérature, à condition que la perturbation en surface soit importante et que l'état moyen de la circulation extratropicale simulé soit suffisamment réaliste. Finalement, la prévisibilité de l'atmosphère associée à l'enneigement est quantifiée de façon plus systématique avec ARPEGE-Climat. Si les résultats montrent un impact mitigé sur la circulation de grande échelle, la relaxation/initialisation du modèle vers/avec des masses de neige plus réalistes permet une meilleure prévisibilité des températures de surface sur l'Europe et l'Amérique du Nord. La neige représente donc une source de prévisibilité climatique non négligeable à l'échelle locale et peut influencer à distance la circulation atmosphérique extratropicale. Les téléconnexions neige-climat doivent être cependant être confirmées dans les années qui viennent, et constituent encore un exercice difficile pour l'état de l'art des modèles de climat.Snow can cover more than 40% of the Earth's land surface during the Northern Hemisphere winter. Because of its influence on the energy balance at the surface, it represents therefore a potential source of climate variability and predictability at the seasonal and monthly timescales. Beyond its local effects, snow cover is able to generate some teleconnections and thereby modulate some remote climatic phenomena. This thesis revisits several aspects of snow-climate relationships using both observed data sets, simulations from the 4th report of the Intergovernmental Panel on Climate Change (IPCC) and the ARPEGE-Climat atmospheric model to perform sensitivity experiments. The influence of Eurasian/Himalayan snow on the Indian summer monsoon, widely reported in the literature, is questioned by the analysis of observed data extended to the 1967-2006 period. However, a predictor associated with large-scale atmospheric circulation over the North Pacific region is proposed to improve the statistical seasonal forecasts of the monsoon rainfall. The influence of the Siberian snow extent in fall on the variability of the wintertime Northern Hemisphere atmosphere seems more robust in the observations. If the IPCC coupled models are unable to reproduce this teleconnection, the sensitivity experiments performed with ARPEGE-Climat confirm the physical mechanism proposed in the literature, depending on the amplitude of the forcing and on the realism of the simulated extratropical circulation mean state. Finally, the atmospheric predictability related to snow is quantified more systematically with ARPEGE-Climat. If the results show a mixed impact on the large scale circulation, relaxation/initialization of the model towards/with a more realistic snow mass leads to a better predictability of surface temperature over Europe and North America. Consequently, snow represents a significant source of climate predictability at the local scale and have remote influence on the extratropical atmospheric circulation. Snow-climate teleconnections should however be confirmed in the coming years and are currently poorly captured by the state-of-the-art climate models

    Multidecadal fluctuations of the North Atlantic Ocean and feedback on the winter climate in CMIP5 control simulations

    Full text link
    This study examines the relationship between the Atlantic Multidecadal Variability (AMV) and the wintertime atmospheric circulation of the North Atlantic in simulations of the fifth Coupled Model Intercomparison Project (CMIP5). Comparisons of internal (using preindustrial control simulations) and externally forced (using historical and Representative Concentration Pathways 8.5 simulations) simulated AMV with observations suggest that the CMIP5 models lack internally generated AMV, except for two models (GFDL-ESM2G and HadGEM2-ES). A long-term influence of the winter North Atlantic Oscillation (NAO) on the AMV is identified, but no consistent feedback of the AMV onto the atmospheric circulation is found among the models. However, GFDL-ESM2G and HadGEM2-ES show a small lagged NAO signal that suggests a driving role of the ocean on decadal fluctuations of the atmosphere, with two different potential mechanisms. HadGEM2-ES exhibits a latitudinal shift of the Atlantic Intertropical Convergence Zone that can modulate the NAO through a Rossby wave train emanating from the tropics. In GFDL-ESM2G, the AMV is associated with a decrease in storm track activity and a shift of the intraseasonal weather regimes toward the negative NAO regime. These results raise hope that some long-term predictability of the winter climate over the North Atlantic and surrounding continents could be extracted from long-term oceanic fluctuations of the North Atlantic Ocean, provided that the AMV is correctly represented in coupled ocean-atmosphere models

    Changes in Greenland’s peripheral glaciers linked to the North Atlantic Oscillation

    Get PDF
    Glaciers and ice caps peripheral to the main Greenland Ice Sheet contribute markedly to sea-level rise1,2,3. Their changes and variability, however, have been difficult to quantify on multi-decadal timescales due to an absence of long-term data4. Here, using historical aerial surveys, expedition photographs, spy satellite imagery and new remote-sensing products, we map glacier length fluctuations of approximately 350 peripheral glaciers and ice caps in East and West Greenland since 1890. Peripheral glaciers are found to have recently undergone a widespread and significant retreat at rates of 12.2 m per year and 16.6 m per year in East and West Greenland, respectively; these changes are exceeded in severity only by the early twentieth century post-Little-Ice-Age retreat. Regional changes in ice volume, as reflected by glacier length, are further shown to be related to changes in precipitation associated with the North Atlantic Oscillation (NAO), with a distinct east–west asymmetry; positive phases of the NAO increase accumulation, and thereby glacier growth, in the eastern periphery, whereas opposite effects are observed in the western periphery. Thus, with projected trends towards positive NAO in the future5,6, eastern peripheral glaciers may remain relatively stable, while western peripheral glaciers will continue to diminish

    Is Eurasian snow cover in October a reliable statistical predictor for the wintertime climate on the Iberian Peninsula?

    Get PDF
    In this study, the recently found lead-lag relationship between Eurasian snow cover increase in October and wintertime precipitation totals on the Iberian Peninsula is re-visited and generalized to a broad range of atmospheric variables on the synoptic and local scale. To this aim, a robust (resistant to outliers) method for calculating the index value for Eurasian snow cover increase in October is proposed. This "Robust Snow Advance Index" (RSAI) is positively correlated with the wintertime (DJF) frequency of cyclonic and westerly flow circulation types over the Iberian Peninsula, while the corresponding relationship with anticyclonic and easterly flow types is negative. For both cases, an explained variance of approximately 60% indicates a strong and highly significant statistical link on the synoptic scale. Consistent with these findings, it is then shown that the lead-lag relationship equally holds for the DJF-mean conditions of (1) precipitation amount, (2) diurnal temperature range, (3) sun hours, (4) cloud cover and (5) wind speed on the local scale. To assess if these target variables can be skillfully hindcast, simple linear regression is applied as a statistical forecasting method, using the October RSAI as the only predictor variable. One-year out cross-validation yields locally significant hindcast correlations of up to approximately 0.8, obtaining field significance for any of the five target variables mentioned above. The validity for a wide range of atmospheric variables and the consistency of the local- and synoptic-scale results affirm the question posed in the title.This study was funded by the EU project SPECS funded by the European Commis326 sions Seventh Framework Research Programme under the grant agreement 24396

    Is sea-ice-driven Eurasian cooling too weak in models?

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData availability: The FACTS and CESM simulations are freely available and were obtained from the following repositories: https://www.esrl.noaa.gov/psd/repository/facts and https://www.cesm.ucar.edu/projects/community-projects/LENS

    The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification

    Get PDF
    This is the final version. Available on open access from the European Geosciences Union via the DOI in this recordPolar amplification-the phenomenon where external radiative forcing produces a larger change in surface temperature at high latitudes than the global average-is a key aspect of anthropogenic climate change, but its causes and consequences are not fully understood. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to the sixth Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016) seeks to improve our understanding of this phenomenon through a coordinated set of numerical model experiments documented here. In particular, PAMIP will address the following primary questions: (1) what are the relative roles of local sea ice and remote sea surface temperature changes in driving polar amplification? (2) How does the global climate system respond to changes in Arctic and Antarctic sea ice? These issues will be addressed with multi-model simulations that are forced with different combinations of sea ice and/or sea surface temperatures representing present-day, pre-industrial and future conditions. The use of three time periods allows the signals of interest to be diagnosed in multiple ways. Lower-priority tier experiments are proposed to investigate additional aspects and provide further understanding of the physical processes. These experiments will address the following specific questions: what role does ocean-atmosphere coupling play in the response to sea ice? How and why does the atmospheric response to Arctic sea ice depend on the pattern of sea ice page1140 forcing? How and why does the atmospheric response to Arctic sea ice depend on the model background state? What have been the roles of local sea ice and remote sea surface temperature in polar amplification, and the response to sea ice, over the recent period since 1979? How does the response to sea ice evolve on decadal and longer timescales? A key goal of PAMIP is to determine the real-world situation using imperfect climate models. Although the experiments proposed here form a coordinated set, we anticipate a large spread across models. However, this spread will be exploited by seeking "emergent constraints" in which model uncertainty may be reduced by using an observable quantity that physically explains the intermodel spread. In summary, PAMIP will improve our understanding of the physical processes that drive polar amplification and its global climate impacts, thereby reducing the uncertainties in future projections and predictions of climate change and variability.DECC/Defra Met Office Hadley Centre Climate ProgrammeEuropean Union Horizon 2020Natural Environment Research Council (NERC)National Science Foundation (NSF)Korean Polar Research InstituteBMBFArCSInderDe

    Super Storm Desmond: a process-based assessment

    Get PDF
    “Super” Storm Desmond broke meteorological and hydrological records during a record warm year in the British-Irish Isles (BI). The severity of the storm may be a harbinger of expected changes to regional hydroclimate as global temperatures continue to rise. Here, we adopt a process-based approach to investigate the potency of Desmond, and explore the extent to which climate change may have been a contributory factor. Through an Eulerian assessment of water vapour flux we determine that Desmond was accompanied by an Atmospheric River (AR) of severity unprecedented since at least 1979, on account of both high atmospheric humidity and high wind speeds. Lagrangian air-parcel tracking and moisture attribution techniques show that long-term warming of North Atlantic sea surface temperatures (SSTs) has significantly increased the chance of such high humidity in ARs in the vicinity of the BI. We conclude that, given exactly the same dynamical conditions associated with Desmond, the likelihood of such an intense AR has already increased by 25% due to long-term climate change. However, our analysis represents a first-order assessment, and further research is needed into the controls influencing AR dynamics

    Geodetic and model data reveal different spatio-temporal patterns of transient mass changes over Greenland from 2007 to 2017

    Get PDF
    peer reviewedMuch of the research to understand the ice mass changes of Greenland ice sheet (GrIS) has focused on detecting linear rates and accelerations at decadal or longer periods. The transient (short-term, non-secular) mass changes show large variability, and if not properly accounted for, can introduce significant biases into estimates of long-term ice mass loss rates and accelerations. Despite the growing number of geodetic observations, in terms of spatial coverage, types of observables, and the extent of the time series, studies of the transient mass changes over GrIS are lacking. To address this limitation, we apply multi-channel singular spectral analysis to the Gravity Recovery and Climate Experiment (GRACE) mass concentrations (mascon), surface mass balance (SMB) model output, and ice discharge data, to determine the transient mass changes over Greenland over the decade (2007 to 2017). The goal of this analysis is to elucidate the spatio-temporal variability of the ice mass change. For the entire GrIS, both the mascon and SMB transient mass changes are characterized by a sustained mass gain from late 2007 to early 2010, a sustained mass loss from early 2010 to early 2013, and a mass gain from early 2013 to mid-2015. Global Positioning System sites deployed along the coast of Greenland showed uplift from early 2010 to early 2013 and subsidence from early 2013 to 2015, consistent with the corresponding ice mass loss and gain of the entire GrIS. The peak-to-peak amplitude of the transient mass change was estimated to be −294 ± 27 Gt from GRACE mascons and -252 ± 16 Gt from the SMB where the latter value includes the effect of ice discharge. The transient mass change due to ice discharge accounted for less than 10% of the total transient mass change. Our regional assessment reveals that the central-west, southwest, northeast, and southeast regions display similar time-varying patterns as we found for the entire GrIS, but the north and northwest regions show different patterns. Atmospheric circulation anomalies as measured by the Greenland Blocking Index (GBI) are able to explain most of these transient anomalies. More specifically, high-GBI-associated high temperature was one of the main reasons for the transient mass loss of the entire GrIS during 2010-2012 while low GBI can explain the transient mass gain during 2013-2015. Contrasting behaviors of precipitation anomalies in east and west Greenland under abnormally high or low GBI conditions may explain the different patterns of the transient mass change in the northwest and the rest of Greenland
    corecore