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 5 ARISING FROM M. Mori et al. Nature Climate Change https://doi.org/10.1038/s41558-018-6 0379-3 (2019) 7  8 In a recent Letter, Mori et al.1 examined connections in observations and climate models 9 between reduced Arctic sea ice and the ‘warm Arctic and cold Eurasia’ (WACE) pattern. They 10 concluded that models systemically underestimate Eurasian cooling in response to sea-ice 11 loss, relative to observations. If correct, their result implies that up to half of the observed 12 Eurasian cooling from 1995-2014 is attributable to sea-ice loss1, whereas previous studies 13 have found a negligible contribution from sea-ice loss2-4. Here, we highlight that their 14 comparisons between observations and models are not like-for-like and when fair 15 comparisons are made, modelled and observed estimates are consistent with each other. The 16 upward adjustment of the contribution of sea-ice loss to observed Eurasian cooling in Mori et 17 al.1 is therefore unjustified. 18  19 An essential first step in model evaluation is to derive an observational benchmark against 20 which models can be assessed. Mori et al. 1 seek an observational estimate of the WACE 21 response to Barents-Kara sea-ice loss. Their approach is to correlate time-series of the WACE 22 and Barents-Kara sea ice. They interpret the squared correlation coefficient multiplied by the 23 WACE variance (hereafter ) as the fraction of WACE variance driven by sea ice. In doing 24 so, they make an assumption about causality. Their apparent justification for this causal 25 inference is that their analysis detects the WACE as the main pattern of sea-ice-driven 26 temperature variability. However, the WACE also varies irrespective of sea ice and as a result, 27 their observed time-series of the WACE ( ) contains variability driven by sea ice and 28 variability not driven by sea ice. Importantly, even the non-sea-ice-driven component will 29 correlate with Barents-Kara sea ice because a warm Arctic causes reduced sea ice, and vice 30 versa. Sea ice and WACE variability will correlate because Arctic temperature and sea ice are 31 strongly and physically connected, even if Eurasian temperature is minimally affected by sea 32 ice, as recent work suggests5. For the reasons just given, the interpretation of  as the 33 fraction of WACE variance driven by sea ice is questionable and, as we will demonstrate, it is 34 likely an overestimation. 35  36 Mori et al.1 also calculate  from atmospheric general circulation model (AGCM) 37 experiments in which sea ice is specified. Interaction between ice and atmosphere is one-way 38 in this experimental setup: the atmospheric response to varying sea ice is represented but the 39 response of sea ice to atmospheric variation is not. Mori et al.1 report that the observed  40 is roughly twice as high as those obtained from seven different AGCMs, leading them to 41 conclude that models systemically underestimate the WACE response to sea-ice loss. 42 However, their comparison between observations and AGCMs is misleading because the 43 observed  reflects two-way interaction between sea ice and atmosphere whereas AGCM-44 derived  only reflects the one-way influence of sea ice on the atmosphere. 45  46 Here, we test how much  is suppressed by a lack of two-way interaction in AGCM 47 simulations. We first reproduced the results of Mori et al.1 (with minor methodological 48 differences; see Methods), which confirms that none of the seven AGCMs reproduce the 49 



observed  (Fig. 1a). It is important to note that this discrepancy is seen in both the winter 50 months collectively (Fig. 1a) and in winter averages (c.f. Fig. 4a in Mori et al.1), which strongly 51 suggests that the origin of the model-observation disparity is not time-scale dependent, and 52 justifies our use of monthly averages in what follows. Next, we compared output from an 53 atmosphere-ocean general circulation model (AOGCM) and an AGCM prescribed with sea ice 54 and sea surface temperatures taken from the parent AOGCM (see Methods). The  in the 55 AOGCM experiment is roughly twice as high as in the AGCM (Fig. 1b), which we attribute to 56 the simulation of two-way atmosphere-ice interaction in the AOGCM but not in the AGCM. The 57 smaller  in AGCMs compared to observations shown originally by Mori et al.1 and 58 reproduced here in Fig. 1a need not imply model error. Instead, it could be largely explained 59 by the lack of two-way interaction in AGCM experiments and the inability of the  method 60 to extract the sea-ice-driven fraction of observed WACE variability. We caution not to directly 61 compare the observed (Fig. 1a) and AOGCM-derived (Fig. 1b)  as they correspond to 62 different climate states. Although the observed  is higher than in the AOGCM, this likely 63 reflects greater sea-ice variability (by ~50%; not shown) in the recent past compared to the 64 preindustrial climate, rather than model error. 65  66 We note that the higher  in the AOGCM compared to the AGCM (Fig. 1b) could arise due 67 to one of two reasons: because coupling is necessary to simulate the effects of WACE 68 variability on sea ice or because ocean feedbacks could amplify the WACE response to sea-ice 69 loss. Regarding the former, coupled models simulate the effects of WACE-related atmospheric 70 circulation variability on Barents-Kara sea ice similarly to the real world5. Regarding the 71 latter, it is clear that ocean feedbacks would strengthen the local warming response to sea-ice 72 loss. However, this need not imply any change in Eurasian cooling. Indeed, Deser et al.6 73 showed that ocean coupling enhanced the Arctic warming and atmospheric circulation 74 responses to sea-ice loss, but suppressed Eurasian cooling. Surveying the literature, there is 75 no evidence that coupled models simulate stronger Eurasian cooling in response to sea-ice 76 loss than uncoupled models6-10. 77  78 To gain further insight, and building upon Blackport et al.5, we propose a refined approach to 79 estimate the WACE variance driven by sea ice, which can be applied equally to observations 80 and AGCMs. We hypothesise that a better estimate can be obtained from the correlation 81 between the WACE and Barents-Kara sea ice in the preceding month, rather than using the 82 contemporaneous correlation. Lead-lag correlation is a common first step in causal discovery 83 and is physically justified here because the upward surface heat flux anomalies that might 84 cause or reinforce the WACE tend to lag reductions in Barents-Kara sea ice5,11. Conversely, 85 WACE-induced (and more generally, circulation-induced) downward heat flux anomalies tend 86 to precede reductions in Barents-Kara sea ice5,11. Blackport et al.5 presented evidence that this 87 1-month lead or 1-month lag approach can effectively distinguish between regimes of ‘ice 88 driving atmosphere’ and ‘atmosphere driving ice’. To test our hypothesis, we repeated the 89 analysis but calculating  with Barents-Kara sea ice one month ahead of the WACE (see 90 Methods). The AOGCM and AGCM gave almost identical estimates of the WACE variance 91 driven by sea ice when using the refined method (Fig. 1d), lending support to our hypothesis 92 and suggesting that ocean coupling has little effect on the WACE response to sea-ice loss.  93  94 Applying the refined approach to the observations and AGCMs (Fig. 1c) leads to a rather 95 different conclusion on model performance to that in Mori et al.1. Now, the estimates from all 96 seven AGCMs lie close to that from observations. Only two AGCMs have ensemble member 97 ranges that do not span the observed estimate, and only by very small margins (likely within 98 observational uncertainty, which has not been accounted for here). We conclude that the 99 modelled and observed estimates of the WACE variance driven by sea ice are consistent with 100 



each other. This suggests that AGCMs are able to realistically simulate the WACE response to 101 sea-ice loss, effectively ruling out either AGCM error or lack of ocean coupling as the main 102 reason for the stronger Eurasian cooling trends in observations compared to AGCMs.  103  104 Lastly, we repeated the analysis but calculating  with Barents-Kara sea ice lagging one 105 month behind the WACE. Now,  provides an estimate of the WACE variance related to 106 atmospheric driving of sea ice.  is non-zero in the AGCMs partly because the imprint of 107 observed WACE variability is contained in the sea ice conditions specified in the AGCMs. Also, 108 due to serial correlation, the  at 1-month lead (Fig. 1d,e) and 1-month lag (Fig. 1c,d) do 109 not, and should not be expected to, sum to the contemporaneous  (Fig. 1a,b). 110 Nevertheless, when sea ice lags the WACE, we find a clear discrepancy between observations 111 and AGCMs (Fig. 1e) and between the AOGCM and AGCM (Fig. 1f), in stark contrast to the 112 consistency found when sea ice leads the WACE (Fig. 1c,d). This provides further evidence 113 that the apparent divergence between observations and models reported by Mori et al.1 stems 114 from the inability of AGCM experiments to simulate the effects of the WACE on sea ice, and the 115 failure of the original  method to extract the sea-ice-driven fraction of observed WACE 116 variability. This reasoning is likely valid across timescales, at least qualitatively, given that 117 WACE-related weather patterns drive warming in the Arctic, thereby reducing sea ice, on sub-118 monthly5,11-13, monthly5,14,15, seasonal5,16 and multidecadal2-5,7,17 timescales. 119 
 120 In summary, here we have shown that the two main conclusions of Mori et al.1 - that models 121 systematically underestimate Eurasian cooling in response to Arctic sea-ice loss and that 122 ~44% of observed Eurasian cooling is attributable to sea-ice loss - were based upon a 123 misleading comparison of observations and models. When fair comparisons are made, 124 observations and models agree on the fraction of WACE variance driven by sea ice. There is 125 therefore, no justification for the adjustment to the model output that leads Mori et al.1 to 126 conclude that 32-51% of observed Eurasian winter cooling from 1995-2014 is attributable to 127 sea-ice loss. Without this misleading adjustment, models suggest that sea-ice loss has 128 contributed little to colder Eurasian winters, which can instead be largely explained as a 129 manifestation of internal climate varaibility2-5.  130  131 
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Methods 184  185 In Fig. 1a,c,e, we use the exact same data as Mori et al.1. Briefly, observational results come 186 from the ERA-Interim reanalysis for the period 1979-2014 and modelled results come from 187 seven AGCM simulations in which observed sea surface temperatures and sea ice have been 188 specified. Further details on these model simulations can be found in Mori et al.1. Additionally 189 in Fig. 1b,d,f, we analyse two experiments performed as part of the Community Earth System 190 Model (CESM) Large Ensemble project18. The first is a 200-year section (years 401-600) of a 191 preindustrial control run of the CESM configured with the Community Atmosphere Model 192 version 5 (CAM5). CESM-CAM5 is a global coupled climate model at approximately 1° 193 horizontal resolution in all model components. The second additional experiment is a 200-194 year simulation with CAM5 in which sea surface temperatures and sea ice were specified from 195 years 401-600 of the parent CESM-CAM5 simulation. External forcing is the same in both 196 simulations. Initially in Fig. 1a, we employed the same methodologies as Mori et al.1 to 197 calculate the WACE pattern, the WACE time-series and the Barents-Kara sea-ice index (see 198 Mori et al.1 for details), with one exception. We computed the WACE and Barents-Kara sea-ice 199 time-series from monthly averages whereas Mori et al.1 used winter averages. The purpose of 200 



this modification is to facilitate subseasonal lead-lag correlations. Projecting near-surface 201 temperatures for December, January and February separately onto the winter-mean WACE 202 pattern produced monthly WACE time-series. Fig. 1a shows the total and sea-ice-driven 203 variance for the three winter months combined. To construct Fig. 1b, we performed an 204 analogous analysis but substituted data from ERA-Interim with that from CESM-CAM5. More 205 specifically, we derived the WACE pattern as the leading mode of covariability from singular 206 value decomposition applied to the CESM-CAM5 and CAM5 simulations. The r2 was then 207 calculated by correlating the corresponding WACE time-series with the Barents-Kara sea-ice 208 index from CESM-CAM5. In this so-called “perfect model” comparison19,20, the coupled model 209 simulation is an analogue for the observations and therefore, any difference between the 210 CESM-CAM5 and CAM5 results can be attributed solely to ocean coupling. To construct Fig. 1c-211 f, we adapted the Mori et al.1 approach by introducing a 1-month lead or lag time between the 212 WACE and Barents-Kara sea-ice time-series. In Fig1c,d we show the combination of three 213 cases where the Barents-Kara sea-ice index leads the WACE time-series by one month: 214 November sea ice correlated with December WACE, December sea ice correlated with January 215 WACE, and January sea ice correlated with February WACE. In Fig1c,d we show the 216 combination of three cases where the Barents-Kara sea-ice index lags the WACE time-series 217 by one month: January sea ice correlated with December WACE, February sea ice correlated 218 with January WACE, and March sea ice correlated with February WACE. 219  220 
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 236 
Figure 1. Observed and modelled estimates of the total and sea-ice-driven WACE 237 
variance. a, Total variance of WACE for ERA-Interim and seven AGCM experiments (blue plus 238 yellow bars). The vertical axis in a is scaled by the total WACE variance in ERA-Interim. The 239 blue bars show the variance explained by Barents-Kara sea ice estimated from . For the 240 AGCMs, the bars show results for all ensemble members (concatenated in series) and the 241 vertical black lines provide the ensemble ranges. b, As (a) but for a single AGCM (CAM5) and 242 it’s parent AOGCM (CESM-CAM5). The vertical axis in b is scaled by the total WACE variance in 243 the coupled model. c,d, As (a,b) but calculating  with Barents-Kara sea ice one month 244 ahead of the WACE. e,f, As (a,b) but calculating  with Barents-Kara sea ice one month 245 behind the WACE. 246  247 


