124 research outputs found

    Bostonia. Volume 13

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Measles virus causes immunogenic cell death in human melanoma

    Get PDF
    Oncolytic viruses (OV) are promising treatments for cancer, with several currently undergoing testing in randomised clinical trials. Measles virus (MV) has not yet been tested in models of human melanoma. This study demonstrates the efficacy of MV against human melanoma. It is increasingly recognised that an essential component of therapy with OV is the recruitment of host anti-tumour immune responses, both innate and adaptive. MV-mediated melanoma cell death is an inflammatory process, causing the release of inflammatory cytokines including type-1 interferons and the potent danger signal HMGB1. Here, using human in vitro models, we demonstrate that MV enhances innate antitumour activity, and that MV-mediated melanoma cell death is capable of stimulating a melanoma-specific adaptive immune response

    Compressional-mode resonances in the molybdenum isotopes: Emergence of softness in open-shell nuclei near A=90

    Get PDF
    "Why are the tin isotopes soft?" has remained, for the past decade, an open problem in nuclear structure physics: models which reproduce the isoscalar giant monopole resonance (ISGMR) in the "doubly-closed shell" nuclei, 90^{90}Zr and 208^{208}Pb, overestimate the ISGMR energies of the open-shell tin and cadmium nuclei, by as much as 1 MeV. In an effort to shed some light onto this problem, we present results of detailed studies of the ISGMR in the molybdenum nuclei, with the goal of elucidating where--and how--the softness manifests itself between 90^{90}Zr and the cadmium and tin isotopes. The experiment was conducted using the 94,96,98,100^{94,96,98,100}Mo(α,α\alpha,\alpha^\prime) reaction at Eα=386E_\alpha = 386 MeV. A comparison of the results with relativistic, self-consistent Random-Phase Approximation calculations indicates that the ISGMR response begins to show softness in the molybdenum isotopes beginning with A=92A=92.Comment: Accepted for publication to Physics Letters

    1 Versus 2-cm Excision Margins for pT2-pT4 Primary Cutaneous Melanoma (MelMarT): A Feasibility Study

    Get PDF
    Abstract Background There is a lack of consensus regarding optimal surgical excision margins for primary cutaneous melanoma &gt; 1 mm in Breslow thickness (BT). A narrower surgical margin is expected to be associated with lower morbidity, improved quality of life (QoL), and reduced cost. We report the results of a pilot international study (MelMarT) comparing a 1 versus 2-cm surgical margin for patients with primary melanoma &gt; 1 mm in BT. Methods This phase III, multicentre trial [NCT02385214] administered by the Australia &amp; New Zealand Medical Trials Group (ANZMTG 03.12) randomised patients with a primary cutaneous melanoma &gt; 1 mm in BT to a 1 versus 2-cm wide excision margin to be performed with sentinel lymph node biopsy. Surgical closure technique was at the discretion of the treating surgeon. Patients’ QoL was measured (FACT-M questionnaire) at baseline, 3, 6, and 12 months after randomisation. Results Between January 2015 and June 2016, 400 patients were randomised from 17 centres in 5 countries. A total of 377 patients were available for analysis. Primary melanomas were located on the trunk (56.9%), extremities (35.6%), and head and neck (7.4%). More patients in the 2-cm margin group required reconstruction (34.9 vs. 13.6%; p &lt; 0.0001). There was an increased wound necrosis rate in the 2-cm arm (0.5 vs. 3.6%; p = 0.036). After 12 months’ follow-up, no differences were noted in QoL between groups. Discussion This pilot study demonstrates the feasibility of a large international RCT to provide a definitive answer to the optimal excision margin for patients with intermediate- to high-risk primary cutaneous melanoma. </jats:sec

    Drug-tubulin interactions interrogated by transient absorption spectroscopy

    Full text link
    [EN] Colchicine (COL) is a bioactive molecule with antitumor properties. When COL binds to tubulin (TU), it inhibits microtubule assembly dynamics. We have investigated COL-TU interactions using laser flash photolysis (LFP) technique and performing fully flexible molecular dynamics simulations. Excitation of COL at 355 nm in aqueous medium did not lead to any transient absorption spectrum. By contrast, in the presence of TU a transient peaking at lambda(max) ca. 420 nm was registered and assigned as triplet excited COL complexed with TU ((COL)-C-3*@TU). In aerated medium, the lifetime was tau ca. 160 mu s and the quantum yield was 0.138. Likewise, when the bicyclic COL analog MTC was submitted to LFP in the presence of TU, (MTC)-M-3@TU* was detected with a lifetime of ca. 62 ms and a quantum yield of 0.296, Aqueous solutions of MTC did not produce any signal in the microsecond timescale. The triplet energy of MTC was obtained by means of emission measurements and found to be ca. 200 kJ mol(-1), a value that matches with that previously reported for COL (188 kJ mol(-1)). Molecular dynamic simulations, both with the ground and triplet excited state, reveal a strong interaction between COL and TU to give stabilized complexes with restricted mobility inside the protein binding site. These results demonstrate that LFP is a useful methodology to study the binding of COL derivatives to TU and open a new way to evaluate the interactions of non-fluorescent anticancer drugs with this protein.Financial support from the Spanish Government (grants CTQ2010-19909; BFU2011-23416 and SEV 2012-0267), the Generalitat Valenciana (Prometeo II/2013/005) and Comunidad de Madrid (S2010/BMD-2353) is gratefully acknowledged. G.S. thanks ASIC-UPV for computing time.Bosca Mayans, F.; Sastre Navarro, GI.; Andreu, JM.; Jornet, D.; Tormos Faus, RE.; Miranda Alonso, MÁ. (2015). Drug-tubulin interactions interrogated by transient absorption spectroscopy. RSC Advances. 5(61):49451-49458. https://doi.org/10.1039/C5RA05636ES4945149458561Mitchison, T., & Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature, 312(5991), 237-242. doi:10.1038/312237a0Margolis, R. L., & Wilson, L. (1978). Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell, 13(1), 1-8. doi:10.1016/0092-8674(78)90132-0Desai, A., & Mitchison, T. J. (1997). MICROTUBULE POLYMERIZATION DYNAMICS. Annual Review of Cell and Developmental Biology, 13(1), 83-117. doi:10.1146/annurev.cellbio.13.1.83Howard, J., & Hyman, A. A. (2003). Dynamics and mechanics of the microtubule plus end. Nature, 422(6933), 753-758. doi:10.1038/nature01600Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4(4), 253-265. doi:10.1038/nrc1317Ravelli, R. B. G., Gigant, B., Curmi, P. A., Jourdain, I., Lachkar, S., Sobel, A., & Knossow, M. (2004). Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 428(6979), 198-202. doi:10.1038/nature02393Cormier, A., Marchand, M., Ravelli, R. B. G., Knossow, M., & Gigant, B. (2008). Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO reports, 9(11), 1101-1106. doi:10.1038/embor.2008.171Prota, A. E., Bargsten, K., Diaz, J. F., Marsh, M., Cuevas, C., Liniger, M., … Steinmetz, M. O. (2014). A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proceedings of the National Academy of Sciences, 111(38), 13817-13821. doi:10.1073/pnas.1408124111Prota, A. E., Bargsten, K., Zurwerra, D., Field, J. J., Díaz, J. F., Altmann, K.-H., & Steinmetz, M. O. (2013). Molecular Mechanism of Action of Microtubule-Stabilizing Anticancer Agents. Science, 339(6119), 587-590. doi:10.1126/science.1230582Prota, A. E., Bargsten, K., Northcote, P. T., Marsh, M., Altmann, K.-H., Miller, J. H., … Steinmetz, M. O. (2014). Structural Basis of Microtubule Stabilization by Laulimalide and Peloruside A. Angewandte Chemie International Edition, 53(6), 1621-1625. doi:10.1002/anie.201307749Brossi, A., Yeh, H. J. C., Chrzanowska, M., Wolff, J., Hamel, E., Lin, C. M., … Silverton, J. (1988). Colchicine and its analogues: Recent findings. Medicinal Research Reviews, 8(1), 77-94. doi:10.1002/med.2610080105Imazio, M., Trinchero, R., & Adler, Y. (2008). Colchicine for the treatment of pericarditis. Future Cardiology, 4(6), 599-607. doi:10.2217/14796678.4.6.599Fakih, M., Replogle, T., Lehr, J. E., Pienta, K. J., & Yagoda, A. (1995). Inhibition of prostate cancer growth by estramustine and colchicine. The Prostate, 26(6), 310-315. doi:10.1002/pros.2990260606Lee, R. M., & Gewirtz, D. A. (2008). Colchicine site inhibitors of microtubule integrity as vascular disrupting agents. Drug Development Research, 69(6), 352-358. doi:10.1002/ddr.20267Abad, A., López-Pérez, J. L., del Olmo, E., García-Fernández, L. F., Francesch, A., Trigili, C., … San Feliciano, A. (2012). Synthesis and Antimitotic and Tubulin Interaction Profiles of Novel Pinacol Derivatives of Podophyllotoxins. Journal of Medicinal Chemistry, 55(15), 6724-6737. doi:10.1021/jm2017573Álvarez, R., Puebla, P., Díaz, J. F., Bento, A. C., García-Navas, R., de la Iglesia-Vicente, J., … Peláez, R. (2013). Endowing Indole-Based Tubulin Inhibitors with an Anchor for Derivatization: Highly Potent 3-Substituted Indolephenstatins and Indoleisocombretastatins. Journal of Medicinal Chemistry, 56(7), 2813-2827. doi:10.1021/jm3015603Panda, D., Daijo, J. E., Jordan, M. A., & Wilson, L. (1995). Kinetic Stabilization of Microtubule Dynamics at Steady State in Vitro by Substoichiometric Concentrations of Tubulin-Colchicine Complex. Biochemistry, 34(31), 9921-9929. doi:10.1021/bi00031a014Andreu, J. M., & Timasheff, S. N. (1982). Interaction of tubulin with single ring analogs of colchicine. Biochemistry, 21(3), 534-543. doi:10.1021/bi00532a019Roesner, M., Capraro, H.-G., Jacobson, A. E., Atwell, L., Brossi, A., Iorio, M. A., … Chignell, C. F. (1981). Biological effects of modified colchicines. Improved preparation of 2-demethylcolchicine, 3-demethylcolchicine, and (+)-colchicine and reassignment of the position of the double bond in dehydro-7-deacetamidocolchicines. Journal of Medicinal Chemistry, 24(3), 257-261. doi:10.1021/jm00135a005Pérez-Ramírez, B., Gorbunoff, M. J., & Timasheff, S. N. (1998). Linkages in Tubulin-Colchicine Functions:  The Role of the Ring C (C‘) Oxygens and Ring B in the Controls†. Biochemistry, 37(6), 1646-1661. doi:10.1021/bi971344dDUMORTIER, C., YAN, Q., BANE, S., & ENGELBORGHS, Y. (1997). Mechanism of tubulin–colchicine recognition: a kinetic study of the binding of the colchicine analogues colchicide and isocolchicine. Biochemical Journal, 327(3), 685-688. doi:10.1042/bj3270685Andreu, J. M., Gorbunopff, M. J., Lee, J. C., & Timasheff, S. N. (1984). Interaction of tubulin with bifunctional colchicine analogs: an equilibrium study. Biochemistry, 23(8), 1742-1752. doi:10.1021/bi00303a025Nguyen, T. L., McGrath, C., Hermone, A. R., Burnett, J. C., Zaharevitz, D. W., Day, B. W., … Gussio, R. (2005). A Common Pharmacophore for a Diverse Set of Colchicine Site Inhibitors Using a Structure-Based Approach. Journal of Medicinal Chemistry, 48(19), 6107-6116. doi:10.1021/jm050502tTorin Huzil, J., Winter, P., Johnson, L., Weis, A. L., Bakos, T., Banerjee, A., … Tuszynski, J. A. (2010). Computational Design and Biological Testing of Highly Cytotoxic Colchicine Ring A Modifications. Chemical Biology & Drug Design, 75(6), 541-550. doi:10.1111/j.1747-0285.2010.00970.xCao, R., Liu, M., Yin, M., Liu, Q., Wang, Y., & Huang, N. (2012). Discovery of Novel Tubulin Inhibitors via Structure-Based Hierarchical Virtual Screening. Journal of Chemical Information and Modeling, 52(10), 2730-2740. doi:10.1021/ci300302cLaing, N., Dahllöf, B., Hartley-Asp, B., Ranganathan, S., & Tew, K. D. (1997). Interaction of Estramustine with Tubulin Isotypes†. Biochemistry, 36(4), 871-878. doi:10.1021/bi961445wGireesh, K. K., Rashid, A., Chakraborti, S., Panda, D., & Manna, T. (2012). CIL-102 binds to tubulin at colchicine binding site and triggers apoptosis in MCF-7 cells by inducing monopolar and multinucleated cells. Biochemical Pharmacology, 84(5), 633-645. doi:10.1016/j.bcp.2012.06.008Gunasekera, N., Xiong, G., Musier-Forsyth, K., & Arriaga, E. (2004). A capillary electrophoretic method for monitoring the presence of α-tubulin in nuclear preparations. Analytical Biochemistry, 330(1), 1-9. doi:10.1016/j.ab.2004.03.059Medrano, F. J., Andreu, J. M., Gorbunoff, M. J., & Timasheff, S. N. (1991). Roles of ring C oxygens in the binding of colchicine to tubulin. Biochemistry, 30(15), 3770-3777. doi:10.1021/bi00229a026Morrison, K. C., & Hergenrother, P. J. (2012). Whole cell microtubule analysis by flow cytometry. Analytical Biochemistry, 420(1), 26-32. doi:10.1016/j.ab.2011.08.020Hastie, S. B., & Rava, R. P. (1989). Analysis of the near-ultraviolet absorption band of colchicine and the effect of tubulin binding. Journal of the American Chemical Society, 111(18), 6993-7001. doi:10.1021/ja00200a015Bhattacharyya, B., Kapoor, S., & Panda, D. (2010). Fluorescence Spectroscopic Methods to Analyze Drug–Tubulin Interactions. Microtubules, in vitro, 301-329. doi:10.1016/s0091-679x(10)95017-6Sardar, P. S., Maity, S. S., Das, L., & Ghosh, S. (2007). Luminescence Studies of Perturbation of Tryptophan Residues of Tubulin in the Complexes of Tubulin with Colchicine and Colchicine Analogues†. Biochemistry, 46(50), 14544-14556. doi:10.1021/bi701412kBhattacharyya, B., & Wolff, J. (1974). Promotion of Fluorescence upon Binding of Colchicine to Tubulin. Proceedings of the National Academy of Sciences, 71(7), 2627-2631. doi:10.1073/pnas.71.7.2627Lhiaubet-Vallet, V., Sarabia, Z., Boscá, F., & Miranda, M. A. (2004). Human Serum Albumin-Mediated Stereodifferentiation in the Triplet State Behavior of (S)- and (R)-Carprofen. Journal of the American Chemical Society, 126(31), 9538-9539. doi:10.1021/ja048518gVayá, I., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413fBosca, F., & Tormos, R. (2013). Behavior of Drug Excited States within Macromolecules: Binding of Colchicine and Derivatives to Albumin. The Journal of Physical Chemistry B, 117(25), 7528-7534. doi:10.1021/jp402489jFltzgerald, T. J. (1976). Molecular features of colchicine associated with antimitotic activity and inhibition of tubulin polymerization. Biochemical Pharmacology, 25(12), 1383-1387. doi:10.1016/0006-2952(76)90108-8Andreu, J. M. (2007). Large Scale Purification of Brain Tubulin With the Modified Weisenberg Procedure. Microtubule Protocols, 17-28. doi:10.1007/978-1-59745-442-1_2S. L. Murov , I.Carmichael and G. L.Hug, Handbook of Photochemistry, Marcel Dekker, Inc., New York, 2nd edn, 1993Silva, J. N., Bosca, F., Tomé, J. P. C., Silva, E. M. P., Neves, M. G. P. M. S., Cavaleiro, J. A. S., … Santus, R. (2009). Tricationic Porphyrin Conjugates: Evidence for Chain-Structure-Dependent Relaxation of Excited Singlet and Triplet States. The Journal of Physical Chemistry B, 113(52), 16695-16704. doi:10.1021/jp907930wLand, E. J. (1980). Pulse radiolysis and flash photolysis: some applications in biology and medicine. Biochimie, 62(4), 207-221. doi:10.1016/s0300-9084(80)80395-6Bensasson, R. V., & Gramain, J.-C. (1980). Benzophenone triplet properties in acetonitrile and water. Reduction by lactams. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 76(0), 1801. doi:10.1039/f19807601801Plimpton, S. (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117(1), 1-19. doi:10.1006/jcph.1995.1039In ’t Veld, P. J., Plimpton, S. J., & Grest, G. S. (2008). Accurate and efficient methods for modeling colloidal mixtures in an explicit solvent using molecular dynamics. Computer Physics Communications, 179(5), 320-329. doi:10.1016/j.cpc.2008.03.005Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035. doi:10.1021/ja00051a040MOPAC2009, James J. P. Stewart, Stewart computational chemistry, version 13.207L; web: http://OpenMOPAC.netMaia, J. D. C., Urquiza Carvalho, G. A., Mangueira, C. P., Santana, S. R., Cabral, L. A. F., & Rocha, G. B. (2012). GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations. Journal of Chemical Theory and Computation, 8(9), 3072-3081. doi:10.1021/ct3004645Chai, J.-D., & Head-Gordon, M. (2008). Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics, 10(44), 6615. doi:10.1039/b810189bSchäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100(8), 5829-5835. doi:10.1063/1.467146Jacquemin, D., Wathelet, V., Perpète, E. A., & Adamo, C. (2009). Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules. Journal of Chemical Theory and Computation, 5(9), 2420-2435. doi:10.1021/ct900298eJacquemin, D., Perpète, E. A., Ciofini, I., & Adamo, C. (2010). Assessment of Functionals for TD-DFT Calculations of Singlet−Triplet Transitions. Journal of Chemical Theory and Computation, 6(5), 1532-1537. doi:10.1021/ct100005dPeach, M. J. G., Benfield, P., Helgaker, T., & Tozer, D. J. (2008). Excitation energies in density functional theory: An evaluation and a diagnostic test. The Journal of Chemical Physics, 128(4), 044118. doi:10.1063/1.2831900Bartovský, P., Tormos, R., & Miranda, M. A. (2009). Colchicine–protein interactions revealed by transient absorption spectroscopy after in situ photoisomerization to lumicolchicines. Chemical Physics Letters, 480(4-6), 305-308. doi:10.1016/j.cplett.2009.09.023Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2008). Determination of Enantiomeric Compositions by Transient Absorption Spectroscopy using Proteins as Chiral Selectors. Chemistry - A European Journal, 14(36), 11284-11287. doi:10.1002/chem.200801657Marcus, Y. (1993). The properties of organic liquids that are relevant to their use as solvating solvents. Chemical Society Reviews, 22(6), 409. doi:10.1039/cs9932200409Nery, A. L. P., Quina, F. H., Moreira, Jr, P. F., Medeiros, C. E. R., Baader, W. J., Shimizu, K., … Bechara, E. J. H. (2001). Does the Photochemical Conversion of Colchicine into Lumicolchicines Involve Triplet Transients? A Solvent Dependence Study¶. Photochemistry and Photobiology, 73(3), 213. doi:10.1562/0031-8655(2001)0732.0.co;2Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.139

    Developing a model for decision-making around antibiotic prescribing for patients with COVID-19 pneumonia in acute NHS hospitals during the first wave of the COVID-19 pandemic: Qualitative results from the Procalcitonin Evaluation of Antibiotic use in COVID-19 Hospitalised patients (PEACH Study)

    Get PDF
    Objective: To explore and model factors affecting antibiotic prescribing decision-making early in the pandemic. Design: Semistructured qualitative interview study. Setting: National Health Service (NHS) trusts/health boards in England and Wales. Participants: Clinicians from NHS trusts/health boards in England and Wales. Method: Individual semistructured interviews were conducted with clinicians in six NHS trusts/health boards in England and Wales as part of the Procalcitonin Evaluation of Antibiotic use in COVID-19 Hospitalised patients study, a wider study that included statistical analysis of procalcitonin (PCT) use in hospitals during the first wave of the pandemic. Thematic analysis was used to identify key factors influencing antibiotic prescribing decisions for patients with COVID-19 pneumonia during the first wave of the pandemic (March to May 2020), including how much influence PCT test results had on these decisions. Results: During the first wave of the pandemic, recommendations to prescribe antibiotics for patients with COVID-19 pneumonia were based on concerns about secondary bacterial infections. However, as clinicians gained more experience with COVID-19, they reported increasing confidence in their ability to distinguish between symptoms and signs caused by SARS-CoV-2 viral infection alone, and secondary bacterial infections. Antibiotic prescribing decisions were influenced by factors such as clinician experience, confidence, senior support, situational factors and organisational influences. A decision-making model was developed. Conclusion: This study provides insight into the decision-making process around antibiotic prescribing for patients with COVID-19 pneumonia during the first wave of the pandemic. The importance of clinician experience and of senior review of decisions as factors in optimising antibiotic stewardship is highlighted. In addition, situational and organisational factors were identified that could be optimised. The model presented in the study can be used as a tool to aid understanding of the complexity of the decision-making process around antibiotic prescribing and planning antimicrobial stewardship support in the context of a pandemic

    Renal biopsy findings among Indigenous Australians: a nationwide review

    Get PDF
    Australia's Indigenous people have high rates of chronic kidney disease and kidney failure. To define renal disease among these people, we reviewed 643 renal biopsies on Indigenous people across Australia, and compared them with 249 biopsies of non-Indigenous patients. The intent was to reach a consensus on pathological findings and terminology, quantify glomerular size, and establish and compare regional biopsy profiles. The relative population-adjusted biopsy frequencies were 16.9, 6.6, and 1, respectively, for Aboriginal people living remotely/very remotely, for Torres Strait Islander people, and for non-remote-living Aboriginal people. Indigenous people more often had heavy proteinuria and renal failure at biopsy. No single condition defined the Indigenous biopsies and, where biopsy rates were high, all common conditions were in absolute excess. Indigenous people were more often diabetic than non-Indigenous people, but diabetic changes were still present in fewer than half their biopsies. Their biopsies also had higher rates of segmental sclerosis, post-infectious glomerulonephritis, and mixed morphologies. Among the great excess of biopsies in remote/very remote Aborigines, females predominated, with younger age at biopsy and larger mean glomerular volumes. Glomerulomegaly characterized biopsies with mesangiopathic changes only, with IgA deposition, or with diabetic change, and with focal segmental glomerulosclerosis (FSGS). This review reveals great variations in biopsy rates and findings among Indigenous Australians, and findings refute the prevailing dogma that most indigenous renal disease is due to diabetes. Glomerulomegaly in remote/very remote Aboriginal people is probably due to nephron deficiency, in part related to low birth weight, and probably contributes to the increased susceptibility to kidney disease and the predisposition to FSGS

    Procalcitonin evaluation of antibiotic use in COVID-19 hospitalised patients (PEACH): protocol for a retrospective observational study

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although COVID-19 is a viral illness, many patients admitted to hospital are prescribed antibiotics, based on concerns that COVID-19 patients may experience secondary bacterial infections, and the assumption that they may respond well to antibiotic therapy. This has led to an increase in antibiotic use for some hospitalised patients at a time when accumulating antibiotic resistance is a major global threat to health. Procalcitonin (PCT) is an inflammatory marker measured in blood samples and widely recommended to help diagnose bacterial infections and guide antibiotic treatment. The PEACH study will compare patient outcomes from English and Welsh hospitals that used PCT testing during the first wave of the COVID-19 pandemic with those from hospitals not using PCT. It will help to determine whether, and how, PCT testing should be used in the NHS in future waves of COVID-19 to protect patients from antibiotic overuse. PEACH is a retrospective observational cohort study using patient-level clinical data from acute hospital Trusts and Health Boards in England and Wales. The primary objective is to measure the difference in antibiotic use between COVID-19 patients who did or did not have PCT testing at the time of diagnosis. Secondary objectives include measuring differences in length of stay, mortality, intensive care unit admission, and resistant bacterial infections between these groups
    corecore