174 research outputs found

    Activation of the SOS response increases the frequency of small colony variants

    No full text
    BACKGROUND: In Staphylococcus aureus sub-populations of slow-growing cells forming small colony variants (SCVs) are associated with persistent and recurrent infections that are difficult to eradicate with antibiotic therapies. In SCVs that are resistant towards aminoglycosides, mutations have been identified in genes encoding components of the respiratory chain. Given the high frequencies of SCVs isolated clinically it is vital to understand the conditions that promote or select for SCVs. RESULTS: In this study we have examined how exposure to sub-inhibitory concentrations of antibiotics with different mechanism of action influence the formation of SCVs that are resistant to otherwise lethal concentrations of the aminoglycoside, gentamicin. We found that exposure of S. aureus to fluoroquinolones and mitomycin C increased the frequency of gentamicin resistant SCVs, while other antibiotic classes failed to do so. The higher proportion of SCVs in cultures exposed to fluoroquinolones and mitomycin C compared to un-exposed cultures correlate with an increased mutation rate monitored by rifampicin resistance and followed induction of the SOS DNA damage response. CONCLUSION: Our observations suggest that environmental stimuli, including antimicrobials that reduce replication fidelity, increase the formation of SCVs through activation of the SOS response and thereby potentially promote persistent infections that are difficult to treat

    Novel pathways for ameliorating the fitness cost of gentamicin resistant small colony variants

    Get PDF
    Small colony variants (SCVs) of the human pathogen Staphylococcus aureus are associated with persistent infections. Phenotypically, SCVs are characterized by slow growth and they can arise upon interruption of the electron transport chain that consequently reduce membrane potential and thereby limit uptake of aminoglycosides (e.g. gentamicin). In this study, we have examined the pathways by which the fitness cost of SCVs can be ameliorated. Five gentamicin resistant SCVs derived from S. aureus JE2 were independently selected on agar plates supplemented with gentamicin. The SCVs carried mutations in the menaquinone and hemin biosynthesis pathways, which caused a significant reduction in exponential growth rates relative to wild type (0.59-0.72) and reduced membrane potentials. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged for up to 500 generations with or without sub-lethal concentrations of gentamicin. Amelioration of the fitness cost followed three evolutionary trajectories and was dependent on the initial mutation type (point mutation vs. deletion) and the passage condition (absence or presence gentamicin). For SCVs evolved in the absence of gentamicin, 12 out of 15 lineages derived from SCVs with point mutations acquired intra-codonic suppressor mutations restoring membrane potential, growth rate, gentamicin susceptibility and colony size to wild type levels. For the SCVs carrying deletions, all lineages enhanced fitness independent of membrane potential restoration without alterations in gentamicin resistance levels. By whole genome sequencing, we identified compensatory mutations in genes related to the σB stress response (7 out of 10 lineages). Inactivation of rpoF that encode for the alternative sigma factor SigB (σB) partially restored fitness of SCVs. For all lineages passaged in the presence of gentamicin, fitness compensation via membrane potential restoration was suppressed, however selected for secondary mutations in fusA and SAUSA300_0749. This study is the first to describe fitness compensatory events in SCVs with deletion mutations and adaptation of SCVs to continued exposure to gentamici

    The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions

    Get PDF
    AbstractColistin is an antimicrobial peptide that has become the only remaining alternative for the treatment of multidrug-resistant Gram-negative bacterial infections, but little is known of how clinical levels of colistin resistance evolve. We use in vitro experimental evolution and whole-genome sequencing of colistin-resistant Pseudomonas aeruginosa isolates from cystic fibrosis patients to reconstruct the molecular evolutionary pathways open for high-level colistin resistance. We show that the evolution of resistance is a complex, multistep process that requires mutation in at least five independent loci that synergistically create the phenotype. Strong intergenic epistasis limits the number of possible evolutionary pathways to resistance. Mutations in transcriptional regulators are essential for resistance evolution and function as nodes that potentiate further evolution towards higher resistance by functionalizing and increasing the effect of the other mutations. These results add to our understanding of clinical antimicrobial peptide resistance and the prediction of resistance evolution.</jats:p

    Contemporary approaches for identifying individual risk for periodontitis

    Full text link
    Key breakthroughs in our understanding of the etiology and principles of predictable treatment of patients with chronic periodontitis first emerged in the late 1960s and carried on into the mid‐1980s. Unfortunately, some generalizations of the evidence led many to believe that periodontitis was a predictable result of exposure to bacterial plaque accumulations over time. For a brief period, the initial plaque concept was translated by some to implicate specific bacterial infections, with both concepts (plaque exposure and specific infection) being false assumptions that led to clinical outcomes which were frustrating to both the clinician and the patient. The primary misconceptions were that every individual was equally susceptible to periodontitis, that disease severity was a simple function of magnitude of bacterial exposure over time, and that all patients would respond predictably if treated based on the key principles of bacterial reduction and regular maintenance care. We now know that although bacteria are an essential initiating factor, the clinical severity of periodontitis is a complex multifactorial host response to the microbial challenge. The complexity comes from the permutations of different factors that may interact to alter a single individual’s host response to challenge, inflammation resolution and repair, and overall outcome to therapy. Fortunately, although there are many permutations that may influence host response and repair, the pathophysiology of chronic periodontitis is generally limited to mild periodontitis with isolated moderate disease in most individuals. However, approximately 20%‐25% of individuals will develop generalized severe periodontitis and probably require more intensive bacterial reduction and different approaches to host modulation of the inflammatory outcomes. This latter group may also have serious systemic implications of their periodontitis. The time appears to be appropriate to use what we know and currently understand to change our approach to clinical care. Our goal would be to increase our likelihood of identifying those patients who have a more biologically disruptive response combined with a more impactful microbial dysbiosis. Current evidence, albeit limited, indicates that for those individuals we should prevent and treat more intensively. This paper discusses what we know and how we might use that information to start individualizing risk and treat some of our patients in a more targeted manner. In my opinion, we are further along than many realize, but we have a great lack of prospective clinical evidence that must be accumulated while we continue to unravel the contributions of specific mechanisms.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146277/1/prd12234_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146277/2/prd12234.pd

    Adaptive Change Inferred from Genomic Population Analysis of the ST93 Epidemic Clone of Community-Associated Methicillin-Resistant Staphylococcus aureus

    Get PDF
    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has emerged as a major public health problem around the world. In Australia, ST93-IV[2B] is the dominant CA-MRSA clone and displays significantly greater virulence than other S. aureus. Here, we have examined the evolution of ST93 via genomic analysis of 12 MSSA and 44 MRSA ST93 isolates, collected from around Australia over a 17-year period. Comparative analysis revealed a core genome of 2.6 Mb, sharing greater than 99.7% nucleotide identity. The accessory genome was 0.45 Mb and comprised additional mobile DNA elements, harboring resistance to erythromycin, trimethoprim, and tetracycline. Phylogenetic inference revealed a molecular clock and suggested that a single clone of methicillin susceptible, Panton-Valentine leukocidin (PVL) positive, ST93 S. aureus likely spread from North Western Australia in the early 1970s, acquiring methicillin resistance at least twice in the mid 1990s. We also explored associations between genotype and important MRSA phenotypes including oxacillin MIC and production of exotoxins (α-hemolysin [Hla], δ-hemolysin [Hld], PSMα3, and PVL). High-level expression of Hla is a signature feature of ST93 and reduced expression in eight isolates was readily explained by mutations in the agr locus. However, subtle but significant decreases in Hld were also noted over time that coincided with decreasing oxacillin resistance and were independent of agr mutations. The evolution of ST93 S. aureus is thus associated with a reduction in both exotoxin expression and oxacillin MIC, suggesting MRSA ST93 isolates are under pressure for adaptive chang

    Frequency and Risk Indicators of Tooth Decay among Pregnant Women in France: A Cross-Sectional Analysis

    Get PDF
    INTRODUCTION: Little is known on the prevalence of tooth decay among pregnant women. Better knowledge of tooth decay risk indicators during pregnancy could help to develop follow-up protocols for women at risk, along with better prevention strategies. The aim of this study was to assess the frequency of tooth decay and the number of decayed teeth per woman in a large sample of pregnant women in France, and to study associated risk indicators. METHODS: A secondary cross-sectional analysis of data from a French multicentre case-control study was performed. The sample was composed of 1094 at-term women of six maternity units. A dental examination was carried out within 2 to 4 days post-partum. Socio-demographic and behavioural characteristics were obtained through a standardised interview with the women. Medical characteristics were obtained from the women's medical records. Risk indicators associated with tooth decay were identified using a negative binomial hurdle model. RESULTS: 51.6% of the women had tooth decay. The mean number of decayed teeth among women having at least one was 3.1 (s.d. = 2.8). Having tooth decay was statistically associated with lower age (aOR = 1.58, 95%CI [1.03,2.45]), lower educational level (aOR = 1.53, 95%CI [1.06,2.23]) and dental plaque (aOR = 1.75, 95%CI [1.27,2.41]). The number of decayed teeth was associated with the same risk indicators and with non-French nationality and inadequate prenatal care. DISCUSSION: The frequency of tooth decay and the number of decayed teeth among pregnant women were high. Oral health promotion programmes must continue to inform women and care providers about the importance of dental care before, during and after pregnancy. Future research should also assess the effectiveness of public policies related to oral health in target populations of pregnant women facing challenging social or economic situations

    Multi-dimensional knowledge of malaria among Nigerian caregivers: implications for insecticide-treated net use by children

    Get PDF
    Abstract Background Poor malaria knowledge can negatively impact malaria control programmes. This study evaluates knowledge distribution in the domains of causation, transmission, vulnerability, symptoms, and treatment of malaria. It assesses the association between a caregiver’s knowledge about malaria and ownership and use of insecticide-treated nets (ITNs) by children. Methods Some 1939 caregivers of young children were recruited through a school-based survey in two Nigerian states. A 20-item, multi-dimensional survey instrument was developed and used to rank each caregiver’s knowledge in five dimensions (cause, transmission, vulnerability, symptoms, treatment of malaria). Scores for each domain were used to create an aggregate knowledge score for each caregiver. The outcome measures were ITN ownership, and ITN use the night and week before the study. Regression models were used to evaluate the relationship between caregiver’s knowledge (individual domains and aggregate score) and ownership and use of ITN after controlling for likely confounders. Results The main predictor of ITN use was ITN ownership (r = 0.653; p < 0.001); however, ownership only explains 43 % of variance in net use. Total knowledge index for the study population was significantly associated with both ITN ownership (r = 0.122; p = 0.001) and use (r = 0.095; p = 0.014). The spectrum of caregiver’s knowledge of malaria and its causes captured in the various domains was, however, found to be poor. Fifty percent of the respondents knew that malaria is transmitted by female mosquitoes and 65 % still believe that too much exposure to the sun is a risk factor for malaria. Knowledge of populations most vulnerable to malaria (83 %) and knowledge of malaria transmission (32 %) were the domains with the highest and lowest average correct answers. Conclusions There is a need to improve ITN coverage in Nigeria as ITN ownership was associated with ITN use. Additionally, treating knowledge as a multi-dimensional phenomenon revealed that a lot of misperceptions about malaria still exist. Distribution of ITNs through the public/private sector may need to be augmented with tailored behavioural change communication to dispel myths and improve the multi-dimensional knowledge of malaria in the local population.http://deepblue.lib.umich.edu/bitstream/2027.42/134666/1/12936_2016_Article_1557.pd
    corecore