147 research outputs found

    TreeCol: a novel approach to estimating column densities in astrophysical simulations

    Full text link
    We present TreeCol, a new and efficient tree-based scheme to calculate column densities in numerical simulations. Knowing the column density in any direction at any location in space is a prerequisite for modelling the propagation of radiation through the computational domain. TreeCol therefore forms the basis for a fast, approximate method for modelling the attenuation of radiation within large numerical simulations. It constructs a HEALPix sphere at any desired location and accumulates the column density by walking the tree and by adding up the contributions from all tree nodes whose line of sight contributes to the pixel under consideration. In particular when combined with widely-used tree-based gravity solvers the new scheme requires little additional computational cost. In a simulation with NN resolution elements, the computational cost of TreeCol scales as NlogNN \log N, instead of the N5/3N^{5/3} scaling of most other radiative transfer schemes. TreeCol is naturally adaptable to arbitrary density distributions and is easy to implement and to parallelize. We discuss its accuracy and performance characteristics for the examples of a spherical protostellar core and for the turbulent interstellar medium. We find that the column density estimates provided by TreeCol are on average accurate to better than 10 percent. In another application, we compute the dust temperatures for solar neighborhood conditions and compare with the result of a full-fledged Monte Carlo radiation-transfer calculation. We find that both methods give very similar answers. We conclude that TreeCol provides a fast, easy to use, and sufficiently accurate method of calculating column densities that comes with little additional computational cost when combined with an existing tree-based gravity solver.Comment: 11 pages, 10 figures, submitted to MNRA

    The Origin and Universality of the Stellar Initial Mass Function

    Full text link
    We review current theories for the origin of the Stellar Initial Mass Function (IMF) with particular focus on the extent to which the IMF can be considered universal across various environments. To place the issue in an observational context, we summarize the techniques used to determine the IMF for different stellar populations, the uncertainties affecting the results, and the evidence for systematic departures from universality under extreme circumstances. We next consider theories for the formation of prestellar cores by turbulent fragmentation and the possible impact of various thermal, hydrodynamic and magneto-hydrodynamic instabilities. We address the conversion of prestellar cores into stars and evaluate the roles played by different processes: competitive accretion, dynamical fragmentation, ejection and starvation, filament fragmentation and filamentary accretion flows, disk formation and fragmentation, critical scales imposed by thermodynamics, and magnetic braking. We present explanations for the characteristic shapes of the Present-Day Prestellar Core Mass Function and the IMF and consider what significance can be attached to their apparent similarity. Substantial computational advances have occurred in recent years, and we review the numerical simulations that have been performed to predict the IMF directly and discuss the influence of dynamics, time-dependent phenomena, and initial conditions.Comment: 24 pages, 6 figures. Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. S. Klessen, C. P. Dullemond, Th. Hennin

    Fragmentation and Evolution of Molecular Clouds. I: Algorithm and First Results

    Full text link
    We present a series of simulations of the fragmentation of a molecular cloud, leading to the formation of a cluster of protostellar cores. The purpose of these simulations is to address a specific numerical problem called artificial fragmentation, that plagues SPH simulations of cloud fragmentation. We argue that this is a serious problem that needs to be addressed, and that the only reasonable and practical way to address it is to use a relatively new technique called particle splitting. Our largest simulation has an effective resolution of 256^3 particles (much higher than most previous SPH simulations of cloud fragmentation) and results in the formation of a dense cluster containing ~3000 protostellar cores. It is the first simulation of this kind to properly resolve the Jeans mass throughout the entire system, at all times, thus preventing artificial fragmentation.Comment: 47 pages, 15 figures (2 grayscale, one color), ApJ Suppl, in pres

    Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement

    Get PDF
    Since the dawn of modern biotechnology public and private enterprise have pursued the development of a new breed of drought tolerant crop products. After more than 20 years of research and investment only a few such products have reached the market. This is due to several technical and market constraints. The technical challenges include the difficulty in defining tractable single-gene trait development strategies, the logistics of moving traits from initial to commercial genetic backgrounds, and the disconnect between conditions in farmer’s fields and controlled environments. Market constraints include the significant difficulty, and associated costs, in obtaining access to markets around the world. Advances in the biology of plant water management, including response to water deficit reveal new opportunities to improve crop response to water deficit and new genome-based tools promise to usher in the next era of crop improvement. As biotechnology looks to improve crop productivity under drought conditions, the environmental and food security advantages will influence public perception and shift the debate toward benefits rather than risks

    The Effects of Accretion Luminosity upon Fragmentation in the Early Universe

    Full text link
    We introduce a prescription for the luminosity from accreting protostars into smoothed particle hydrodynamics simulation, and apply the method to simulations of five primordial minihalos generated from cosmological initial conditions. We find that accretion luminosity delays fragmentation within the halos, but does not prevent it. In halos that slowly form a low number of protostars, the accretion luminosity can reduce the number of fragments that are formed before the protostars start ionising their surroundings. However, halos that rapidly form many protostars become dominated by dynamical processes, and the effect of accretion luminosity becomes negligible. Generally the fragmentation found in the halos is highly dependent on the initial conditions. Accretion luminosity does not substantially affect the accretion rates experienced by the protostars, and is far less important than dynamical interactions, which can lead to ejections that effectively terminate the accretion. We find that the accretion rates onto the inner regions of the disks (20 AU) around the protostars are highly variable, in contrast to the constant or smoothly decreasing accretion rates currently used in models of the pre-main sequence evolution of Population III stars.Comment: 12 pages, 10 figures and 3 tables. Accepted by MNRA

    Modeling Collapse and Accretion in Turbulent Gas Clouds: Implementation and Comparison of Sink Particles in AMR and SPH

    Full text link
    We implemented sink particles in the adaptive mesh refinement (AMR) hydrodynamics code FLASH. Sink particles are created in regions of local gravitational collapse, and their trajectories and accretion can be followed over many dynamical times. We perform a series of tests including the time integration of circular and elliptical orbits, the collapse of a Bonnor-Ebert sphere and a rotating, fragmenting cloud core. We compare the collapse of a highly unstable singular isothermal sphere to the theory by Shu (1977), and show that the sink particle accretion rate is in excellent agreement with the theoretical prediction. To model eccentric orbits and close encounters of sink particles accurately, we show that a very small timestep is often required, for which we implemented subcycling of the N-body system. We emphasize that a sole density threshold for sink particle creation is insufficient in supersonic flows, if the density threshold is below the opacity limit. In that case, the density can exceed the threshold in strong shocks that do not necessarily lead to local collapse. Additional checks for bound state, gravitational potential minimum, Jeans instability and converging flows are absolutely necessary for a meaningful creation of sink particles. We apply our new sink particle module for FLASH to the formation of a stellar cluster, and compare to a smoothed particle hydrodynamics (SPH) code with sink particles. Our comparison shows encouraging agreement of gas properties, indicated by column density distributions and radial profiles, and of sink particle formation times and positions. We find excellent agreement in the number of sink particles formed, and in their accretion and mass distributions.Comment: 30 pages, 17 figures, ApJ accepted, simulation movies available at http://www.ita.uni-heidelberg.de/~chfeder/videos.shtml?lang=e

    How to humiliate and shame: A reporter's guide to the power of the mugshot

    Get PDF
    This is an Author's Accepted Manuscript of an article published in Social Semiotics, 24(1), 56-87, 2014, copyright Taylor & Francis, available online at: http://www.tandfonline.com/The judicial photograph – the “mugshot” – is a ubiquitous and instantly recognisable form, appearing in the news media, on the internet, on book covers, law enforcement noticeboards and in many other mediums. This essay attempts to situate the mugshot in a historical and theoretical context to explain the explicit and implicit meaning of the genre as it has developed, focussing in particular on their use in the UK media in late modernity. The analysis is based on the author's reflexive practice as a journalist covering crime in the national news media for 30 years and who has used mugshots to illustrate stories for their explicit and specific content. The author argues that the visual limitations of the standardised “head and shoulders” format of the mugshot make it a robust subject for analysing the changing meaning of images over time. With little variation in the image format, arguments for certain accreted layers of signification are easier to make. Within a few years of the first appearance of the mugshot form in the mid-19th century, it was adopted and adapted as a research tool by scientists and criminologists. While the positivist scientists claimed empirical objectivity we can now see that mugshots played a part in the construction of subjective notions of “the other”, “the lesser” or “sub-human” on the grounds of class, race and religion. These dehumanising ideas later informed the theorists and bureaucrats of National Socialist ideology from the 1920s to 1940s. The author concludes that once again the mugshot has become, in certain parts of the media, a signifier widely used to exclude or deride certain groups. In late modernity, the part of the media that most use mugshots – the tabloid press and increasingly tabloid TV – is part of a neo-liberal process that, in a conscious commercial appeal to the paying audience, seeks to separate rather than unify wider society

    Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Procedures were devised to measure trace concentrations of I-129 in the inorganic salt CsI as well as in organic liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to improvement in sensitivities by several orders of magnitude over other methods. No evidence of their existence in these materials were observed. Limits of < 6 X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI and liquid scintillator, respectively, were derived.These are the first results in a research program whose goals are to develop techniques to measure trace radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass Spectrometr

    Protostellar collapse and fragmentation using an MHD GADGET

    Full text link
    Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics (SPH) method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsical difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the 'Boss & Bodenheimer standard isothermal test case', to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the 'magnetic cushioning effect', where the magnetic field is wound up to form a 'cushion' between the binary, aids binary fragmentation in a case, where previously only formation of a single protostar was expected.Comment: 18 pages, 11 figures. Final version (with revisions). Accepted to MNRA

    Protostellar outflows with Smoothed Particle Magnetohydrodynamics (SPMHD)

    Full text link
    The protostellar collapse of a molecular cloud core is usually accompanied by outflow phenomena. The latter are thought to be driven by magnetorotational processes from the central parts of the protostellar disc. While several 3D AMR/nested grid studies of outflow phenomena in collapsing magnetically supercritical dense cores have been reported in the literature, so far no such simulation has been performed using the Smoothed Particle Hydrodynamics (SPH) method. This is mainly due to intrinsic numerical difficulties in handling magnetohydrodynamics within SPH, which only recently were partly resolved. In this work, we use an approach where we evolve the magnetic field via the induction equation, augmented with stability correction and divergence cleaning schemes. We consider the collapse of a rotating core of one solar mass, threaded by a weak magnetic field initially parallel to the rotation axis so that the core is magnetically supercritical. We show, that Smoothed Particle Magnetohydrodynamics (SPMHD) is able to handle the magnetorotational processes connected with outflow phenomena, and to produce meaningful results which are in good agreement with findings reported in the literature. Especially, our numerical scheme allows for a quantitative analysis of the evolution of the ratio of the toroidal to the poloidal magnetic field, which we performed in this work.Comment: 5 pages, 4 figures. Accepted to MNRAS Letter
    corecore