8 research outputs found

    Detection and Quantification of SARS-CoV-2 Receptor Binding Domain Neutralization by a Sensitive Competitive ELISA Assay

    No full text
    This protocol describes an ELISA-based procedure for accurate measurement of SARS-CoV-2 spike protein-receptor binding domain (RBD) neutralization efficacy by murine immune serum. The procedure requires a small amount of S-protein/RBD and angiotensin converting enzyme-2 (ACE2). A high-throughput, simple ELISA technique is employed. Plate-coated-RBDs are allowed to interact with the serum, then soluble ACE2 is added, followed by secondary antibodies and substrate. The key steps in this procedure include (1) serum heat treatment to prevent non-specific interactions, (2) proper use of blank controls to detect side reactions and eliminate secondary antibody cross-reactivity, (3) the addition of an optimal amount of saturating ACE2 to maximize sensitivity and prevent non-competitive co-occurrence of RBD-ACE2 binding and neutralization, and (4) mechanistically derived neutralization calculation using a calibration curve. Even manually, the protocol can be completed in 16 h for >30 serum samples; this includes the 7.5 h of incubation time. This automatable, high-throughput, competitive ELISA assay can screen a large number of sera, and does not require sterile conditions or special containment measures, as live viruses are not employed. In comparison to the ‘gold standard’ assays (virus neutralization titers (VNT) or plaque reduction neutralization titers (PRNT)), which are laborious and time consuming and require special containment measures due to their use of live viruses. This simple, alternative neutralization efficacy assay can be a great asset for initial vaccine development stages. The assay successfully passed conventional validation parameters (sensitivity, specificity, precision, and accuracy) and results with moderately neutralizing murine sera correlated with VNT assay results (R2 = 0.975, n = 25), demonstrating high sensitivity

    Peptide-Based Vaccine against SARS-CoV-2: Peptide Antigen Discovery and Screening of Adjuvant Systems

    No full text
    The SARS-CoV-2 virus has caused a global crisis, resulting in 0.5 billion infections and over 6 million deaths as of March 2022. Fortunately, infection and hospitalization rates were curbed due to the rollout of DNA and mRNA vaccines. However, the efficacy of these vaccines significantly drops a few months post immunization, from 88% down to 47% in the case of the Pfizer BNT162 vaccine. The emergence of variant strains, especially delta and omicron, have also significantly reduced vaccine efficacy. We propose peptide vaccines as a potential solution to address the inadequacies of the current vaccines. Peptide vaccines can be easily modified to target emerging strains, have greater stability, and do not require cold-chain storage. We screened five peptide fragments (B1–B5) derived from the SARS-CoV-2 spike protein to identify neutralizing B-cell peptide antigens. We then investigated adjuvant systems for efficient stimulation of immune responses against the most promising peptide antigens, including liposomal formulations of polyleucine (L10) and polymethylacrylate (PMA), as well as classical adjuvants (CFA and MF59). Immune efficacy of formulations was evaluated using competitive ELISA, pseudovirion neutralization, and live virus neutralization assays. Unfortunately, peptide conjugation to L10 and PMA dramatically altered the secondary structure, resulting in low antibody neutralization efficacy. Of the peptides tested, only B3 administered with CFA or MF59 was highly immunogenic. Thus, a peptide vaccine relying on B3 may provide an attractive alternative to currently marketed vaccines

    Complete protection by a single-dose skin patch–delivered SARS-CoV-2 spike vaccine

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 160 million people and resulted in more than 3.3 million deaths, and despite the availability of multiple vaccines, the world still faces many challenges with their rollout. Here, we use the high-density microarray patch (HD-MAP) to deliver a SARS-CoV-2 spike subunit vaccine directly to the skin. We show that the vaccine is thermostable on the patches, with patch delivery enhancing both cellular and antibody immune responses. Elicited antibodies potently neutralize clinically relevant isolates including the Alpha and Beta variants. Last, a single dose of HD-MAP–delivered spike provided complete protection from a lethal virus challenge in an ACE2-transgenic mouse model. Collectively, these data show that HD-MAP delivery of a SARS-CoV-2 vaccine was superior to traditional needle-and-syringe vaccination and may be a significant addition to the ongoing COVID-19 (coronavirus disease 2019) pandemic.</p

    Dermal Delivery of a SARS-CoV-2 Subunit Vaccine Induces Immunogenicity against Variants of Concern

    No full text
    The ongoing coronavirus disease 2019 (COVID-19) pandemic continues to disrupt essential health services in 90 percent of countries today. The spike (S) protein found on the surface of the causative agent, the SARS-CoV-2 virus, has been the prime target for current vaccine research since antibodies directed against the S protein were found to neutralize the virus. However, as new variants emerge, mutations within the spike protein have given rise to potential immune evasion of the response generated by the current generation of SARS-CoV-2 vaccines. In this study, a modified, HexaPro S protein subunit vaccine, delivered using a needle-free high-density microarray patch (HD-MAP), was investigated for its immunogenicity and virus-neutralizing abilities. Mice given two doses of the vaccine candidate generated potent antibody responses capable of neutralizing the parental SARS-CoV-2 virus as well as the variants of concern, Alpha and Delta. These results demonstrate that this alternative vaccination strategy has the potential to mitigate the effect of emerging viral variants

    Dermal Delivery of a SARS-CoV-2 Subunit Vaccine Induces Immunogenicity against Variants of Concern

    No full text
    The ongoing coronavirus disease 2019 (COVID-19) pandemic continues to disrupt essential health services in 90 percent of countries today. The spike (S) protein found on the surface of the causative agent, the SARS-CoV-2 virus, has been the prime target for current vaccine research since antibodies directed against the S protein were found to neutralize the virus. However, as new variants emerge, mutations within the spike protein have given rise to potential immune evasion of the response generated by the current generation of SARS-CoV-2 vaccines. In this study, a modified, HexaPro S protein subunit vaccine, delivered using a needle-free high-density microarray patch (HD-MAP), was investigated for its immunogenicity and virus-neutralizing abilities. Mice given two doses of the vaccine candidate generated potent antibody responses capable of neutralizing the parental SARS-CoV-2 virus as well as the variants of concern, Alpha and Delta. These results demonstrate that this alternative vaccination strategy has the potential to mitigate the effect of emerging viral variants

    References

    No full text

    Literatur

    No full text
    corecore