81 research outputs found

    Correlation between Heavy Metal-Induced Histopathological Changes and Trophic Interactions between Different Fish Species

    Get PDF
    This study assessed the distribution of heavy metals in the gills, kidney, and liver, correlated with the severity of histopathological changes, of three fish species with different feeding habitats (Barbus barbus, Squalius cephalus, and Chondrostoma nasus) from the Crisul Negru river, Romania. The levels of copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb), and zinc (Zn) in fish tissues were measured by atomic absorption spectrophotometry. Histopathology and the expressions of TNF-alpha and proliferation cell nuclear antigen (PCNA) were investigated by immunohistochemistry and Western blot. Our data suggest a significant correlation between the bioconcentration level of metals and structural changes. The carnivorous species was the most affected compared to the omnivorous and herbivorous ones, and the most affected organ was the kidney. Moreover, the correlation of tissue damage with the PCNA and TNF-alpha expression levels revealed that the herbivorous species presented less extended lesions, likely due to higher activated repair mechanisms and lower levels of inflammation. In conclusion, our data and the subsequent statistical analysis suggest that feeding behavior could be correlated with the histopathological alterations and might be used for a more profound evaluation of aquatic environment safety and analysis of aquatic ecosystems

    LEADER 5: prevalence and cardiometabolic impact of obesity in cardiovascular high-risk patients with type 2 diabetes mellitus: baseline global data from the LEADER trial

    Get PDF
    Background: Epidemiological data on obesity are needed, particularly in patients with type 2 diabetes mellitus (T2DM) and high cardiovascular (CV) risk. We used the baseline data of liraglutide effect and action in diabetes: evaluation of CV outcome results—A long term Evaluation (LEADER) (a clinical trial to assess the CV safety of liraglutide) to investigate: (i) prevalence of overweight and obesity; (ii) relationship of the major cardiometabolic risk factors with anthropometric measures of adiposity [body mass index (BMI) and waist circumference (WC)]; and (iii) cardiometabolic treatment intensity in relation to BMI and WC. Methods: LEADER enrolled two distinct populations of high-risk patients with T2DM in 32 countries: (1) aged ≥50 years with prior CV disease; (2) aged ≥60 years with one or more CV risk factors. Associations of metabolic variables, demographic variables and treatment intensity with anthropometric measurements (BMI and WC) were explored using regression models (ClinicalTrials.gov identifier: NCT01179048). Results: Mean BMI was 32.5 ± 6.3 kg/m2 and only 9.1 % had BMI <25 kg/m2. The prevalence of healthy WC was also extremely low (6.4 % according to International Joint Interim Statement for the Harmonization of the Metabolic Syndrome criteria). Obesity was associated with being younger, female, previous smoker, Caucasian, American, with shorter diabetes duration, uncontrolled blood pressure (BP), antihypertensive agents, insulin plus oral antihyperglycaemic treatment, higher levels of triglycerides and lower levels of high-density lipoprotein cholesterol. Conclusions: Overweight and obesity are prevalent in high CV risk patients with T2DM. BMI and WC are related to the major cardiometabolic risk factors. Furthermore, treatment intensity, such as insulin, statins or oral antihypertensive drugs, is higher in those who are overweight or obese; while BP and lipid control in these patients are remarkably suboptimal. LEADER confers a unique opportunity to explore the longitudinal effect of weight on CV risk factors and hard endpoints

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883

    Stratospheric aerosol - Observations, processes, and impact on climate

    Get PDF
    Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfate matter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes

    International Monetary Fund

    No full text

    Cushing’s disease – Same condition, different scenarios

    No full text
    Cushing’s disease is a rare pathology characterized by excess production of adrenocorticotropic hormone (ACTH) secondary to a pituitary adenoma which stimulates adrenal cortisol secretion. The main consequences are the metabolic and cardiovascular complications, as well as osteoporosis and infection predisposition, which increase mortality in untreated patients. The first case presentation is about a patient with Cushing’s disease, surgically treated and cured, without any need for substitution or signs of pituitary-adrenal axis failure. The second case is a patient diagnosed with Cushing’s disease, with multiple complications, with clinical and hormonal relapse after selective adenomectomy and resistant to medical therapy, who is scheduled for reintervention. The third presentation is about a patient known with osteoporosis, diagnosed with Cushing’s disease based on the clinical appearance with bilateral adrenal adenomas, with left suprarenalectomy and pituitary gamma knife radiotherapy. We aim to introduce a pictorial assay consisting of a series of three cases, different from detection, management and outcom

    Whole-body impedance control of wheeled mobile manipulators: Stability analysis and experiments on the humanoid robot Rollin' Justin

    No full text
    Humanoid service robots in domestic environments have to interact with humans and their surroundings in a safe and reliable way. One way to manage that is to equip the robotic systems with force-torque sensors to realize a physically compliant whole-body behavior via impedance control. To provide mobility, such robots often have wheeled platforms. The main advantage is that no balancing effort has to be made compared to legged humanoids. However, the nonholonomy of most wheeled systems prohibits the direct implementation of impedance control due to kinematic rolling constraints that must be taken into account in modeling and control. In this paper we design a whole-body impedance controller for such a robot, which employs an admittance interface to the kinematically controlled mobile platform. The upper body impedance control law, the platform admittance interface, and the compensation of dynamic couplings between both subsystems yield a passive closed loop. The convergence of the state to an invariant set is shown. To prove asymptotic stability in the case of redundancy, priority-based approaches can be employed. In principle, the presented approach is the extension of the well-known and established impedance controller to mobile robots. Experimental validations are performed on the humanoid robot Rollin’ Justin. The method is suitable for compliant manipulation tasks with low-dimensional planning in the task space
    corecore