281 research outputs found

    Phonon Thermodynamics versus Electron-Phonon Models

    Full text link
    Applying the path integral formalism we study the equilibrium thermodynamics of the phonon field both in the Holstein and in the Su-Schrieffer-Heeger models. The anharmonic cumulant series, dependent on the peculiar source currents of the {\it e-ph} models, have been computed versus temperature in the case of a low energy oscillator. The cutoff in the series expansion has been determined, in the low TT limit, using the constraint of the third law of thermodynamics. In the Holstein model, the free energy derivatives do not show any contribution ascribable to {\it e-ph} anharmonic effect. We find signatures of large {\it e-ph} anharmonicities in the Su-Schrieffer-Heeger model mainly visible in the temperature dependent peak displayed by the phonon heat capacity

    Satellite versus ground-based estimates of burned area: a comparison between MODIS based burned area and fire agency reports over North America in 2007

    Get PDF
    North American wildfire management teams routinely assess burned area on site during firefighting campaigns; meanwhile, satellite observations provide systematic and global burned-area data. Here we compare satellite and ground-based daily burned area for wildfire events for selected large fires across North America in 2007 on daily timescales. In a sample of 26 fires across North America, we found the Global Fire Emissions Database Version 4 (GFED4) estimated about 80% of the burned area logged in ground-based Incident Status Summary (ICS-209) over 8-day analysis windows. Linear regression analysis found a slope between GFED and ICS-209 of 0.67 (with R = 0.96). The agreement between these data sets was found to degrade at short timescales (from R = 0.81 for 4-day to R = 0.55 for 2-day). Furthermore, during large burning days (> 3000 ha) GFED4 typically estimates half of the burned area logged in the ICS-209 estimates

    Clouds, photolysis and regional tropospheric ozone budgets.

    Get PDF
    We use a three-dimensional chemical transport model to examine the shortwave radiative effects of clouds on the tropospheric ozone budget. In addition to looking at changes in global concentrations as previous studies have done, we examine changes in ozone chemical production and loss caused by clouds and how these vary in different parts of the troposphere. On a global scale, we find that clouds have a modest effect on ozone chemistry, but on a regional scale their role is much more significant, with the size of the response dependent on the region. The largest averaged changes in chemical budgets (±10–14%) are found in the marine troposphere, where cloud optical depths are high. We demonstrate that cloud effects are small on average in the middle troposphere because this is a transition region between reduction and enhancement in photolysis rates. We show that increases in boundary layer ozone due to clouds are driven by large-scale changes in downward ozone transport from higher in the troposphere rather than by decreases in in-situ ozone chemical loss rates. Increases in upper tropospheric ozone are caused by higher production rates due to backscattering of radiation and consequent increases in photolysis rates, mainly J(NO2). The global radiative effect of clouds on isoprene, through decreases of OH in the lower troposphere, is stronger than on ozone. Tropospheric isoprene lifetime increases by 7% when taking clouds into account. We compare the importance of clouds in contributing to uncertainties in the global ozone budget with the role of other radiatively-important factors. The budget is most sensitive to the overhead ozone column, while surface albedo and clouds have smaller effects. However, uncertainty in representing the spatial distribution of clouds may lead to a large sensitivity of the ozone budget components on regional scales

    Interannual variability of tropospheric composition:the influence of changes in emissions, meteorology and clouds

    Get PDF
    We have run a chemistry transport model (CTM) to systematically examine the drivers of interannual variability of tropospheric composition during 1996-2000. This period was characterised by anomalous meteorological conditions associated with the strong El Nino of 1997-1998 and intense wildfires, which produced a large amount of pollution. On a global scale, changing meteorology (winds, temperatures, humidity and clouds) is found to be the most important factor driving interannual variability of NO2 and ozone on the timescales considered. Changes in stratosphere-troposphere exchange, which are largely driven by meteorological variability, are found to play a particularly important role in driving ozone changes. The strong influence of emissions on NO2 and ozone interannual variability is largely confined to areas where intense biomass burning events occur. For CO, interannual variability is almost solely driven by emission changes, while for OH meteorology dominates, with the radiative influence of clouds being a very strong contributor. Through a simple attribution analysis for 1996-2000 we conclude that changing cloudiness drives 25% of the interannual variability of OH over Europe by affecting shortwave radiation. Over Indonesia this figure is as high as 71%. Changes in cloudiness contribute a small but non-negligible amount (up to 6%) to the interannual variability of ozone over Europe and Indonesia. This suggests that future assessments of trends in tropospheric oxidizing capacity should account for interannual variability in cloudiness, a factor neglected in many previous studies

    Theory of Bubble Nucleation and Cooperativity in DNA Melting

    Full text link
    The onset of intermediate states (denaturation bubbles) and their role during the melting transition of DNA are studied using the Peyrard-Bishop-Daxuois model by Monte Carlo simulations with no adjustable parameters. Comparison is made with previously published experimental results finding excellent agreement. Melting curves, critical DNA segment length for stability of bubbles and the possibility of a two states transition are studied.Comment: 4 figures. Accepted for publication in Physical Review Letter

    Linkages Between Ozone-depleting Substances, Tropospheric Oxidation and Aerosols

    Get PDF
    Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (22.6mW/sq. m for CFCs and 6.7mW/sq. m for N2O) and sulfate aerosols (3.0mW/sq. m for CFCs and +6.5mW/sq. m for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate

    Non Local Electron-Phonon Correlations in a Dispersive Holstein Model

    Full text link
    Due to the dispersion of optical phonons, long range electron-phonon correlations renormalize downwards the coupling strength in the Holstein model. We evaluate the size of this effect both in a linear chain and in a square lattice for a time averaged {\it e-ph} potential, where the time variable is introduced according to the Matsubara formalism. Mapping the Holstein Hamiltonian onto the time scale we derive the perturbing source current which appears to be non time retarded. This property permits to disentangle phonon and electron coordinates in the general path integral for an electron coupled to dispersive phonons. While the phonon paths can be integrated out analytically, the electron path integrations have to be done numerically. The equilibrium thermodynamic properties of the model are thus obtained as a function of the electron hopping value and of the phonon spectrum parameters. We derive the {\it e-ph} corrections to the phonon free energy and show that its temperature derivatives do not depend on the {\it e-ph} effective coupling hence, the Holstein phonon heat capacity is strictly harmonic. A significant upturn in the low temperature total heat capacity over TT ratio is attributed to the electron hopping which largely contributes to the action.Comment: Phys.Rev.B (2005

    NA

    Get PDF
    http://archive.org/details/missilemisdistan00voulNAN

    Precipitation response to regional radiative forcing

    Get PDF
    Precipitation shifts can have large impacts on human society and ecosystems. Many aspects of how inhomogeneous radiative forcings influence precipitation remain unclear, however. Here we investigate regional precipitation responses to various forcings imposed in different latitude bands in a climate model. We find that several regions show strong, significant responses to most forcings, but that the magnitude and even the sign depends upon the forcing location and type. Aerosol and ozone forcings typically induce larger responses than equivalent carbon dioxide (CO<sub>2</sub>) forcing, and the influence of remote forcings often outweighs that of local forcings. Consistent with this, ozone and especially aerosols contribute greatly to precipitation changes over the Sahel and South and East Asia in historical simulations, and inclusion of aerosols greatly increases the agreement with observed trends in these areas, which cannot be attributed to either greenhouse gases or natural forcings. Estimates of precipitation responses derived from multiplying our Regional Precipitation Potentials (RPP; the response per unit forcing relationships) by historical forcings typically capture the actual response in full transient climate simulations fairly well, suggesting that these relationships may provide useful metrics. The strong sensitivity to aerosol and ozone forcing suggests that although some air quality improvements may unmask greenhouse gas-induced warming, they have large benefits for reducing regional disruption of the hydrologic cycle
    corecore