160 research outputs found
Sleep quality, mental health and body mass index among undergraduate medical students: a cross-sectional study
Background: Association of sleep disorders is found cardiovascular mortality, stroke, diabetes, impaired glucose tolerance, immune dysfunction, endocrine impairments, and psychiatric morbidities including depression. Sleep quality affects college students physical and psychological health. Thus, poor sleep quality is a serious problem in college students. This study was done to assess the quality of sleep among undergraduate medical college students, to explore relationship between quality of sleep and body mass index, to study relationship between quality of sleep and anxiety, to study relationship between quality of sleep and depression.Methods: Total 300 medical students were selected by systematic random sampling method i.e. 25 students from each year studying in 3 government medical college were selected. A descriptive questionnaire for all socio-demographic parameters along with validated instrument i.e. for sleep quality, Pittsburgh sleep quality index (PSQI), for anxiety Hamilton anxiety rating scale and for depression, Becks depression inventory were used for the data collection instruments.Results: Amongst the 300 subjects 189 (63.00%) were found to be poor sleepers. The sleep quality was poor among the subjects who are in final academic year though the difference was not statistically significant (c²=2.78, df=3, p=0.4267). It was found that sleep quality was decreased among overweight and obese persons, but the difference was not statistically significant. (c²=4.657, df=2, p=0.0974). Prevalence of anxiety was found to be more in poor sleepers. Depression was also more common among the poor sleepers and the difference was statistically significant.Conclusions: Poor sleep quality was associated with depression and anxiety in students
Trend analysis of annual and seasonal rainfall to climate variability in North-East region of India
Global warming, climate change and its consequences are major threat for the global agriculture. The agriculture in the North-East region of India is supposed to more in danger due to its topographic features. Agriculture in the state of Arunachal Pradesh is dependent on rainfall and variability in rainfall due to climate change is expected to threaten the food production in future. This study examines the impact of climate change on rainfall using the trend analysis technique for the four districts of Arunachal Pradesh. For this purpose temporal trends in annual and seasonal rainfall were detected using nonparametric Mann-Kendall test at 5% significance level. The daily time series rainfall data for the period 1971-2007 were analyzed statistically for each district separately. The results of Mann Kendall test showed decreasing trend in annual mean rainfall in east Siang, upper Siang and lowers Dibang valley and no trend in the west Siang district over the period of 1971-2007. In case of east Siang, upper Siang and lower Dibang valley districts, decreasing trend of rainfall was observed in the post monsoon season with slope magnitude of 3.01 mm/yr, 3.32 mm/yr and 3.95 mm/yr respectively. Decreasing pattern of rainfall in post monsoon season may affect the vegetable and fruit production in the winter season
A comparative study of fractional order PIλ /PIλ Dμ tuning rules for stable first order plus time delay processes
Conventional PID tuning methods may not be sufficient to deal with complex processes of modern industry. For better control, fractional order PIλDµ controller was introduced as the generalization of classical PID controller with the help of non-integer order (fractional order) calculus. The fractional calculus uses integration and differentiation with a fractional order or complex order. The major advantage of fractional derivative is the ability to inherit the nature of the processes. In general, the control loop includes both fractional order process model and fractional order controller. However, the processes to be controlled are usually modeled as integer order models and controlled using fractional order controllers. But if the plant model is obtained as fractional model, it is converted into integer order model by approximating the fractional terms using different approximations proposed in the literature. With all the above mentioned advantages, several fractional order PIλ/PIλDµ tuning rules are proposed in the literature for integer order systems and researchers are still proposing the new rules. The main aim of this paper is to compare fractional order PI/PID tuning methods based on Integral of Absolute Error (IAE), Total Variation (TV) and Maximum Sensitivity (Ms). The main reason for choosing fractional order PIλ/PIλDµ controllers is their additional degrees of freedom that result in better control performance. These tuning rules were applied on several first order plus time delay processes subjected to step change in setpoint and disturbance
Estimation of Sensor-based site specific variable rate fertilizer application for maize (Zea mays L.) crop
Optical spectrometry sensors in crops offer a remarkable technological breakthrough in the field of variable-rate nitrogen fertilization. A field study was conducted during rainy (kharif) season of 2021 at the research farm of the Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore to estimate maize crop nitrogen (N), Normalized Difference Vegetation Index (NDVI) value and chlorophyll content in hybrid maize COH (M) 8. Fertilizers were administered to the plots following the recommendations (250:75:75 kg NPK ha-1) given under Soil Test Crop Response, with a goal yield of 9t ha-1 predicted based on the initial soil available N, P, and K values. The experimental findings revealed a significant impact of nitrogen rate (P<0.001) on the percentage of nitrogen content in the leaves (% N leaf content). Additionally, there was a decrease in maize leaf chlorophyll content index over time, with ranges of 32.96 to 50.57, 28.78 to 41.78, 24.81 to 35.86, 22.12 to 28.54, and 14.34 to 20.56. On the contrary, the NDVI experienced an increase throughout the season, with ranges of 0.32 to 0.49, 0.30 to 0.55, 0.28 to 0.66, 0.46 to 0.88, and 0.56 to 0.84. The study will help foster sustainability within modern intensive farming practices by emphasizing the importance of reducing environmental pollution caused by applying Sensor-based site-specific nitrogen fertilizer for maize crop
A review: On path planning strategies for navigation of mobile robot
This paper presents the rigorous study of mobile robot navigation techniques used so far. The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap. The classical approaches such as cell decomposition (CD), roadmap approach (RA), artificial potential field (APF); reactive approaches such as genetic algorithm (GA), fuzzy logic (FL), neural network (NN), firefly algorithm (FA), particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization (BFO), artificial bee colony (ABC), cuckoo search (CS), shuffled frog leaping algorithm (SFLA) and other miscellaneous algorithms (OMA) are considered for study. The navigation over static and dynamic condition is analyzed (for single and multiple robot systems) and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches. It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm. Hence, reactive approaches are more popular and widely used for path planning of mobile robot. The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics
Deep reinforcement learning for drone navigation using sensor data
Mobile robots such as unmanned aerial vehicles (drones) can be used for surveillance, monitoring and data collection in buildings, infrastructure and environments. The importance of accurate and multifaceted monitoring is well known to identify problems early and prevent them escalating. This motivates the need for flexible, autonomous and powerful decision-making mobile robots. These systems need to be able to learn through fusing data from multiple sources. Until very recently, they have been task specific. In this paper, we describe a generic navigation algorithm that uses data from sensors on-board the drone to guide the drone to the site of the problem. In hazardous and safety-critical situations, locating problems accurately and rapidly is vital. We use the proximal policy optimisation deep reinforcement learning algorithm coupled with incremental curriculum learning and long short-term memory neural networks to implement our generic and adaptable navigation algorithm. We evaluate different configurations against a heuristic technique to demonstrate its accuracy and efficiency. Finally, we consider how safety of the drone could be assured by assessing how safely the drone would perform using our navigation algorithm in real-world scenarios
Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017 : a systematic analysis for the Global Burden of Disease Study 2017
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. Methods: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting. Findings: Globally, for females, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and haemoglobinopathies and haemolytic anaemias in both 1990 and 2017. For males, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and tuberculosis including latent tuberculosis infection in both 1990 and 2017. In terms of YLDs, low back pain, headache disorders, and dietary iron deficiency were the leading Level 3 causes of YLD counts in 1990, whereas low back pain, headache disorders, and depressive disorders were the leading causes in 2017 for both sexes combined. All-cause age-standardised YLD rates decreased by 3·9% (95% uncertainty interval [UI] 3·1–4·6) from 1990 to 2017; however, the all-age YLD rate increased by 7·2% (6·0–8·4) while the total sum of global YLDs increased from 562 million (421–723) to 853 million (642–1100). The increases for males and females were similar, with increases in all-age YLD rates of 7·9% (6·6–9·2) for males and 6·5% (5·4–7·7) for females. We found significant differences between males and females in terms of age-standardised prevalence estimates for multiple causes. The causes with the greatest relative differences between sexes in 2017 included substance use disorders (3018 cases [95% UI 2782–3252] per 100 000 in males vs s1400 [1279–1524] per 100 000 in females), transport injuries (3322 [3082–3583] vs 2336 [2154–2535]), and self-harm and interpersonal violence (3265 [2943–3630] vs 5643 [5057–6302]). Interpretation: Global all-cause age-standardised YLD rates have improved only slightly over a period spanning nearly three decades. However, the magnitude of the non-fatal disease burden has expanded globally, with increasing numbers of people who have a wide spectrum of conditions. A subset of conditions has remained globally pervasive since 1990, whereas other conditions have displayed more dynamic trends, with different ages, sexes, and geographies across the globe experiencing varying burdens and trends of health loss. This study emphasises how global improvements in premature mortality for select conditions have led to older populations with complex and potentially expensive diseases, yet also highlights global achievements in certain domains of disease and injury. Funding: Bill & Melinda Gates Foundation
Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17 : analysis for the Global Burden of Disease Study 2017
Background
Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea incidence and mortality is attributable to interventions that protect children, prevent infection, and treat disease. Identifying subnational regions with the highest burden and mapping associated risk factors can aid in reducing preventable childhood diarrhoea.
Methods
We used Bayesian model-based geostatistics and a geolocated dataset comprising 15 072 746 children younger than 5 years from 466 surveys in 94 LMICs, in combination with findings of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, to estimate posterior distributions of diarrhoea prevalence, incidence, and mortality from 2000 to 2017. From these data, we estimated the burden of diarrhoea at varying subnational levels (termed units) by spatially aggregating draws, and we investigated the drivers of subnational patterns by creating aggregated risk factor estimates.
Findings
The greatest declines in diarrhoeal mortality were seen in south and southeast Asia and South America, where 54·0% (95% uncertainty interval [UI] 38·1–65·8), 17·4% (7·7–28·4), and 59·5% (34·2–86·9) of units, respectively, recorded decreases in deaths from diarrhoea greater than 10%. Although children in much of Africa remain at high risk of death due to diarrhoea, regions with the most deaths were outside Africa, with the highest mortality units located in Pakistan. Indonesia showed the greatest within-country geographical inequality; some regions had mortality rates nearly four times the average country rate. Reductions in mortality were correlated to improvements in water, sanitation, and hygiene (WASH) or reductions in child growth failure (CGF). Similarly, most high-risk areas had poor WASH, high CGF, or low oral rehydration therapy coverage.
Interpretation
By co-analysing geospatial trends in diarrhoeal burden and its key risk factors, we could assess candidate drivers of subnational death reduction. Further, by doing a counterfactual analysis of the remaining disease burden using key risk factors, we identified potential intervention strategies for vulnerable populations. In view of the demands for limited resources in LMICs, accurately quantifying the burden of diarrhoea and its drivers is important for precision public health
Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17
Background Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40.0% (95% uncertainty interval [UI] 39.4-40.7) to 50.3% (50.0-50.5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46.3% (95% UI 46.1-46.5) in 2017, compared with 28.7% (28.5-29.0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88.6% (95% UI 87.2-89.7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664-711) of the 1830 (1797-1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76.1% (95% UI 71.6-80.7) of countries from 2000 to 2017, and in 53.9% (50.6-59.6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe
Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17
Background: Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods: We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings: Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40·0% (95% uncertainty interval [UI] 39·4–40·7) to 50·3% (50·0–50·5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46·3% (95% UI 46·1–46·5) in 2017, compared with 28·7% (28·5–29·0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88·6% (95% UI 87·2–89·7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664–711) of the 1830 (1797–1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76·1% (95% UI 71·6–80·7) of countries from 2000 to 2017, and in 53·9% (50·6–59·6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation: Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation
- …