66 research outputs found
Automatic Classification of Medicinal Plants Using State-Of-The-Art Pre-Trained Neural Networks
Now a days every mankind is suffering due to infections. Ayurveda, the science of life helped to take preventive measures which boost our immunity. It is plant-based science. Many medicinal plants found useful in daily life of common people for boosting immunity. Identifying the plant species having medicinal plant is challenging, it requires botanical expert. In the process of manual identification, botanical experts use various plant features as the identification keys, which are examined adaptively and progressively to identify plant species. The shortage of experts and trained taxonomist created global taxonomic impediment problem which is one of the major challenges. Various researchers have worked in the field of automatic classification of plants since the last decade. The leaf is considered as primary input as it is available throughout the whole year. The research paper mainly focuses on the study of transfer learning approach for medicinal plant classification, which reuse already developed model at the starting point for model on a second task. Transfer learning approach is a black box approach used for image classification and many more applications by extracting features from an image. Some of the transfer learning models are MobileNet-V1, VGG-19, ResNet-50, VGG-16. Here it uses Mendeley dataset of Indian medicinal plant species which is freely available. Output layer classifies the species of leaves. The result provides evaluation and variations of above listed features extracted models. MobileNetV1 achieves maximum accuracy of 98%
Local Industrialization Based Lucrative Farming Using Machine Learning Technique
In recent times, agriculture have gained lot of attention of researchers. More precisely, crop prediction is trending topic for research as it leads agri-business to success or failure. Crop prediction totally rest on climatic and chemical changes. In the past which crop to promote was elected by rancher. All the decisions related to its cultivation, fertilizing, harvesting and farm maintenance was taken by rancher himself with his experience. But as we can see because of constant fluctuations in atmospheric conditions coming to any conclusion have become very tough. Picking correct crop to grow at right times under right circumstances can help rancher to make more business. To achieve what we cannot do manually we have started building machine learning models for it nowadays. To predict the crop deciding which parameters to consider and whose impact will be more on final decision is also equally important. For this we use feature selection models. This will alter the underdone data into more precise one. Though there have been various techniques to resolve this problem better performance is still desirable. In this research we have provided more precise & optimum solution for crop prediction keeping Satara, Sangli, Kolhapur region of Maharashtra. Along with crop & composts to increase harvest we are offering industrialization around so rancher can trade the yield & earn more profit. The proposed solution is using machine learning algorithms like KNN, Random Forest, Naïve Bayes where Random Forest outperforms others so we are using it to build our final framework to predict crop
Urbanisation and new agroecologies : the story of Bengaluru’s peripheries
Rural–urban interfaces worldwide are increasingly
witnessing massive transformations in the structure,
functions, and services of complex ecosystems of these
zones. An attempt has been made to understand the
transitions triggered by urbanisation in the peri-urban
agricultural systems of Bengaluru. Using a combination
of land-use change analysis and group interactions, the
temporal and spatial patterns in the impacts of urban
expansion on agroecology in Bengaluru’s peripheries
have been traced. The varying nature of agroecological
and sociocultural impacts corresponding to differences
in the pattern of urban expansion along different
directions from the city have also been unravelled.
Further, agroecological repercussions of existing and
proposed urban planning strategies for Bengaluru have
been discussed
Handling classroom hunger : comparing modes of mid-day meal delivery in Anekal block, Karnataka
: The Mid-Day Meal (MDM) is an important nutrition-specific intervention of the Government of
India, providing a specified quantum of food and calories for children in primary schools across the country.
The New Education Policy (2020) reiterates the importance of ensuring that childhood flourishing is not
impeded by classroom hunger. There are currently several models for providing the MDM in schools – either
through kitchens established within the schools or through an external agency (NGO).
The study aimed to evaluate the impact of a quality-controlled mid-day meal program from a centralized
kitchen on children’s nutritional indicators and learning outcomes, in comparison to the standard meal
provided by government/NGOs. In addition, the study looked at household characteristics of students to
determine their impact on children’s nutritional outcomes.
The study was conducted in Anekal block in Bangalore district, Karnataka, and looked at the difference in
nutritional outcomes of children in schools where the MDM was a) cooked within the school; b) provided by
Akshay Patra, and c) provided by an alternate NGO. Anthropometric measures were taken of children in 16
government schools, as well as their learning outcomes in Kannada and Mathematics. In addition, household
characteristics were recorded.
The findings show that children in primary school are at nutritional risk, and MDM is a key intervention that
can make a material difference. Ensuring that this meal is wholesome, nutritious and adequate is critical. Of
the three sources of MDM studied, students in schools supplied by Akshay Patra were found to be statistically
significantly better off in terms of standard anthropometric measures. Taste and hygiene are important
determinants of whether children eat the MDM.
A simple regression analysis of children’s/household characteristics and BMI revealed the following
significant coefficients at the .05 level: gender, type of kitchen (Akshay Patra), age of the child, mother’s
weight, availability of ration card and consumption of green, leafy vegetables by the index child. Regarding
the relationship between nutritional status and learning outcomes, the data did not show any correlation
between learning outcomes and BMI status in any of the groups by gender or class.
India’s mid-day meal scheme is the largest scheme of its type globally. To reap its full benefit, the government
needs to focus on improving its quality and nutritional value, and thereby enhance its impact. In addition,
the outreach of nutritional support programs that enhance household availability of food, such as the Public
Distribution System, should be expanded. The paper also argues for better management of schools: our data
show a strong relationship between learning outcomes and overall school management; and demonstrates
that it has implications for the MDM delivery model selected by the school. This reinforces the importance of
putting more resources towards strengthening school management capacity, for the positive impacts on both
nutritional and learning outcomes
Urban wastewater for agriculture : farmers’ perspectives from peri-urban Bengaluru
Urbanisation, while offering marketing opportunities, inflicts considerable impacts
on ecology, health, and livelihoods in the peri-urban farming areas. The city demands
perishable products that need input intensive farming. In parallel, it also discharges domestic
sewage and industrial effluents into peri-urban water bodies. The availability of wastewater
for irrigation has been a saviour for peri-urban farmers, amidst the many constraints
they face. Using nutrient-rich wastewater is also a smart strategy of combining fertiliser
application with irrigation. This can balance nutrient flows between the consumption and
production hubs. Concomitant and discernible implications of this process on the health of
farmers, consumers, and the peri-urban environment, rarely receive needed attention. Even
the discourse on sustainable cities seldom conveys the imperative of reducing consumptive use
of water to curtail its forward and backward impacts.
A participatory assessment using focus group discussions, multi-criteria mapping and a
stakeholder workshop was conducted in Byramangala in order to understand the farmers’
perspectives on their future as beneficiaries of wastewater (domestic sewage with industrial
effluents) generated in the Vrishabhavathy watershed of Bengaluru city. Farmers were trying
hard to adapt to the heavily polluted environment manifested in the restricted choice of crops,
lower prices fetched by their produce, health impacts and resultant socio-cultural fallouts.
The study also revealed high priority that farmers attach to health imparting attributes of
agriculture. Their concerns on the two possible scenarios of wastewater supply were elicited.
Farmers’ preference for effectively treated wastewater was found to be overshadowed by its
potential diversion for urban use. Despite concerns on water quality, they were keen to continue
agriculture and would expect to be informed in advance about any impending diversions.
The political-economic ‘eminent domain’ of urbanism excludes the farmer constituency from
strategizing freshwater extraction and the disposal of its wastewater. It needs to be confronted
with concerted efforts to build institutional capacities for a decentralised wastewater
governance, inclusive of downstream farmers, in place of pacifying measures like installing
subsidised water purifiers for domestic use. The development and sustainability benefits of
such efforts will include reliable farm livelihoods built on regional circular economies along
with safe and healthy food and the environment in the urban - peri-urban continuum
Small farms around Bangalore : growing money at the cost of food and environment
Urbanisation, along with becoming a universal trend, has also emerged as a significant driver of agricultural transition in the developing world. More and more people from rural parts of India migrate to urban centers in search of non-farm livelihood options and for better living conditions. Urbanisation is closely coupled with transformation of traditional rural economies into modern industrial economies through irreversible land use change. The land remaining under farming is also influenced by urban demand with mixed outcomes in production and livelihoods. India exhibits this reciprocity of urbanisation and farming prominently
Mapping child growth failure across low- and middle-income countries
Child growth failure (CGF), manifested as stunting, wasting, and underweight, is associated with high 5 mortality and increased risks of cognitive, physical, and metabolic impairments. Children in low- and middle-income countries (LMICs) face the highest levels of CGF globally. Here we illustrate national and subnational variation of under-5 CGF indicators across LMICs, providing 2000–2017 annual estimates mapped at a high spatial resolution and aggregated to policy-relevant administrative units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the World Health 10 Organization’s ambitious Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and rates of progress exist across regions, countries, and within countries; our maps identify areas where high prevalence persists even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where subnational disparities exist and the highest-need populations reside, these geospatial estimates can support policy-makers in planning locally 15 tailored interventions and efficient directing of resources to accelerate progress in reducing CGF and its health implications
Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation
Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
Background:
Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods.
Methods:
We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories.
Findings:
From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger.
Interpretation:
Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress
Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017
Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
- …