605 research outputs found
Lattice-gas Monte Carlo study of adsorption in pores
A lattice gas model of adsorption inside cylindrical pores is evaluated with
Monte Carlo simulations. The model incorporates two kinds of site: (a line of)
``axial'' sites and surrounding ``cylindrical shell'' sites, in ratio 1:7. The
adsorption isotherms are calculated in either the grand canonical or canonical
ensembles. At low temperature, there occur quasi-transitions that would be
genuine thermodynamic transitions in mean-field theory. Comparison between the
exact and mean-field theory results for the heat capacity and adsorption
isotherms are provided
Class of correlated random networks with hidden variables
We study a class models of correlated random networks in which vertices are
characterized by \textit{hidden variables} controlling the establishment of
edges between pairs of vertices. We find analytical expressions for the main
topological properties of these models as a function of the distribution of
hidden variables and the probability of connecting vertices. The expressions
obtained are checked by means of numerical simulations in a particular example.
The general model is extended to describe a practical algorithm to generate
random networks with an \textit{a priori} specified correlation structure. We
also present an extension of the class, to map non-equilibrium growing networks
to networks with hidden variables that represent the time at which each vertex
was introduced in the system
Topology and correlations in structured scale-free networks
We study a recently introduced class of scale-free networks showing a high
clustering coefficient and non-trivial connectivity correlations. We find that
the connectivity probability distribution strongly depends on the fine details
of the model. We solve exactly the case of low average connectivity, providing
also exact expressions for the clustering and degree correlation functions. The
model also exhibits a lack of small world properties in the whole parameters
range. We discuss the physical properties of these networks in the light of the
present detailed analysis.Comment: 10 pages, 9 figure
Mean-field analysis of the q-voter model on networks
We present a detailed investigation of the behavior of the nonlinear q-voter
model for opinion dynamics. At the mean-field level we derive analytically, for
any value of the number q of agents involved in the elementary update, the
phase diagram, the exit probability and the consensus time at the transition
point. The mean-field formalism is extended to the case that the interaction
pattern is given by generic heterogeneous networks. We finally discuss the case
of random regular networks and compare analytical results with simulations.Comment: 20 pages, 10 figure
Epidemiological, clinical and immunohistochemical aspects of canine lymphoma in the region of Porto Alegre, Brazil
This paper describes the epidemiological, clinical and immunohistochemical characteristics of canine lymphomas diagnosed in the region of Porto Alegre, Brazil. Thirty dogs were enrolled in the study; most of them were male (60%), mixed-breed (23%) and middle-aged or older. The majority (87%) of affected dogs showed the multicentric form. The B-cell phenotype was most frequently detected (62%); 37% of the animals were in clinical stage IV, and 83% were classified as sub-stage "b". Lymphadenopathy was observed in 67% of the cases, and dyspnea, prostration, decreased appetite and vomiting were the most common clinical signs encountered. Anemia was a frequently encountered laboratory alteration (57%), as were leukocytosis (40%), thrombocytopenia (33%), lymphopenia (30%), hyperglobulinemia (20%) and hypercalcemia (13%). The results of this study indicate that the clinical features of dogs with lymphoma in the region of Porto Alegre are similar to those observed worldwide
Heterogenous mean-field analysis of a generalized voter-like model on networks
We propose a generalized framework for the study of voter models in complex
networks at the the heterogeneous mean-field (HMF) level that (i) yields a
unified picture for existing copy/invasion processes and (ii) allows for the
introduction of further heterogeneity through degree-selectivity rules. In the
context of the HMF approximation, our model is capable of providing
straightforward estimates for central quantities such as the exit probability
and the consensus/fixation time, based on the statistical properties of the
complex network alone. The HMF approach has the advantage of being readily
applicable also in those cases in which exact solutions are difficult to work
out. Finally, the unified formalism allows one to understand previously
proposed voter-like processes as simple limits of the generalized model
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
- …