245 research outputs found

    Thermodynamics of the Anisotropic Spin-1/2 Heisenberg Chain and Related Quantum Chains

    Full text link
    The free energy and correlation lengths of the spin-1/2 XYZXYZ chain are studied at finite temperature. We use the quantum transfer matrix approach and derive non-linear integral equations for all eigenvalues. Analytic results are presented for the low-temperature asymptotics, in particular for the critical XXZXXZ chain in an external magnetic field. These results are compared to predictions by conformal field theory. The integral equations are solved numerically for the non-critical XXZXXZ chain and the related spin-1 biquadratic chain at arbitrary temperature.Comment: 31 pages, LATEX, 5 PostScript figures appended, preprint cologne-93-471

    Two-magnon Raman scattering in insulating cuprates: Modifications of the effective Raman operator

    Full text link
    Calculations of Raman scattering intensities in spin 1/2 square-lattice Heisenberg model, using the Fleury-Loudon-Elliott theory, have so far been unable to describe the broad line shape and asymmetry of the two magnon peak found experimentally in the cuprate materials. Even more notably, the polarization selection rules are violated with respect to the Fleury-Loudon-Elliott theory. There is comparable scattering in B1gB_{1g} and A1gA_{1g} geometries, whereas the theory would predict scattering in only B1gB_{1g} geometry. We review various suggestions for this discrepency and suggest that at least part of the problem can be addressed by modifying the effective Raman Hamiltonian, allowing for two-magnon states with arbitrary total momentum. Such an approach based on the Sawatzsky-Lorenzana theory of optical absorption assumes an important role of phonons as momentum sinks. It leaves the low energy physics of the Heisenberg model unchanged but substantially alters the Raman line-shape and selection rules, bringing the results closer to experiments.Comment: 7 pages, 6 figures, revtex. Contains some minor revisions from previous versio

    Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd

    Full text link
    A theory for the equilibrium low-temperature magnetization M of a diluted Heisenberg antiferromagnetic chain is presented. The magnetization curve, M versus B, is calculated using the exact contributions of finite chains with 1 to 5 spins, and the "rise and ramp approximation" for longer chains. Some non-equilibrium effects that occur in a rapidly changing B, are also considered. Specific non-equilibrium models based on earlier treatments of the phonon bottleneck, and of spin flips associated with cross relaxation and with level crossings, are discussed. Magnetization data on powders of TMMC diluted with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from pairs is used to determine the NN exchange constant, J, which changes from -5.9 K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained in the superconducting magnets are compared with simulations based on the equilibrium theory. Data for the differential susceptibility, dM/dB, were taken in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more severe as x decreased, were observed. The non-equilibrium effects are tentatively interpreted using the "Inadequate Heat Flow Scenario," or to cross-relaxation, and crossings of energy levels, including those of excited states.Comment: 16 pages, 14 figure

    A comparative study of electrical potential sensors and Ag/AgCl electrodes for characterising spontaneous and event related electroencephalagram signals

    Get PDF
    For exactly 90 years researchers have used electroencephalography (EEG) as a window into the activities of the brain. Even now its high temporal resolution coupled with relatively low cost compares favourably to other neuroimaging techniques such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). For the majority of this time the standard electrodes used for non-invasive monitoring of electrical activities of the brain have been Ag/AgCl metal electrodes. Although these electrodes provide a reliable method for recording EEG they suffer from noise, such as offset potential drift, and usability issues, for example, difficult skin preparation and cross-coupling of adjacent electrodes. In order to tackle these issues a prototype Electric Potential Sensor (EPS) device based on an auto-zero operational amplifier has been developed and evaluated. The absence of 1/f noise in these devices makes them ideal for use with signal frequencies of ~10 Hz or less. The EPS is a novel active ultrahigh impedance capacitively coupled sensor. The active electrodes are designed to be physically and electrically robust and chemically and biochemically inert. They are electrically insulated (anodized) and scalable. A comprehensive study was undertaken to compare the results of neural signals recorded by the EPS with a standard commercial EEG system. These studies comprised measurements of both free running EEG and Event Related Potentials (ERPs). Results demonstrate that the EPS provides a promising alternative, with many added benefits compared to standard EEG sensors, including reduced setup time, elimination of sensor cross-coupling, lack of a ground electrode and distortion of electrical potentials encountered when using standard gel electrodes. Quantitatively, highly similar signals were observed between the EPS and EEG sensors for both free running and evoked brain activity with cross correlations of higher than 0.9 between the EPS and a standard benchmark EEG system. Future developments of EPS-based neuroimaging include the implementation of a whole head ultra-dense EPS array, and the mapping of distributions of scalp recorded electrical potentials remotely

    Equation of state for Universe from similarity symmetries

    Full text link
    In this paper we proposed to use the group of analysis of symmetries of the dynamical system to describe the evolution of the Universe. This methods is used in searching for the unknown equation of state. It is shown that group of symmetries enforce the form of the equation of state for noninteracting scaling multifluids. We showed that symmetries give rise the equation of state in the form p=−Λ+w1ρ(a)+w2aÎČ+0p=-\Lambda+w_{1}\rho(a)+w_{2}a^{\beta}+0 and energy density ρ=Λ+ρ01a−3(1+w)+ρ02aÎČ+ρ03a−3\rho=\Lambda+\rho_{01}a^{-3(1+w)}+\rho_{02}a^{\beta}+\rho_{03}a^{-3}, which is commonly used in cosmology. The FRW model filled with scaling fluid (called homological) is confronted with the observations of distant type Ia supernovae. We found the class of model parameters admissible by the statistical analysis of SNIa data. We showed that the model with scaling fluid fits well to supernovae data. We found that Ωm,0≃0.4\Omega_{\text{m},0} \simeq 0.4 and n≃−1n \simeq -1 (ÎČ=−3n\beta = -3n), which can correspond to (hyper) phantom fluid, and to a high density universe. However if we assume prior that Ωm,0=0.3\Omega_{\text{m},0}=0.3 then the favoured model is close to concordance Λ\LambdaCDM model. Our results predict that in the considered model with scaling fluids distant type Ia supernovae should be brighter than in Λ\LambdaCDM model, while intermediate distant SNIa should be fainter than in Λ\LambdaCDM model. We also investigate whether the model with scaling fluid is actually preferred by data over Λ\LambdaCDM model. As a result we find from the Akaike model selection criterion prefers the model with noninteracting scaling fluid.Comment: accepted for publication versio

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays

    Get PDF
    A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    Measurement of the CP-violating phase \phi s in Bs->J/\psi\pi+\pi- decays

    Get PDF
    Measurement of the mixing-induced CP-violating phase phi_s in Bs decays is of prime importance in probing new physics. Here 7421 +/- 105 signal events from the dominantly CP-odd final state J/\psi pi+ pi- are selected in 1/fb of pp collision data collected at sqrt{s} = 7 TeV with the LHCb detector. A time-dependent fit to the data yields a value of phi_s=-0.019^{+0.173+0.004}_{-0.174-0.003} rad, consistent with the Standard Model expectation. No evidence of direct CP violation is found.Comment: 15 pages, 10 figures; minor revisions on May 23, 201

    Search for the lepton-flavor-violating decays Bs0→e±Ό∓ and B0→e±Ό∓

    Get PDF
    A search for the lepton-flavor-violating decays Bs0→e±Ό∓ and B0→e±Ό∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0  fb-1 of pp collisions at √s=7  TeV, collected by the LHCb experiment. The observed number of Bs0→e±Ό∓ and B0→e±Ό∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±Ό∓)101  TeV/c2 and MLQ(B0→e±Ό∓)>126  TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
    • 

    corecore