371 research outputs found

    Kimberley Research Station progress report, 1964 : soil fertility and plant nutrition

    Get PDF
    BEFORE 1963, very little work, other than that described in Burvill\u27s original report, had been done on the analysis of Ord soils, nor had their fertility status been clearly defined

    Does musical enrichment enhance the neural coding of syllables? Neuroscientific interventions and the importance of behavioral data

    Get PDF
    A commentary on: Music enrichment programs improve the neural encoding of speech in at-risk children by Kraus, N., Slater, J., Thompson, E. C., Hornickel, J., Strait, D. L., Nicol, T., et al. (2014). J. Neurosci. 34, 11913–11918. doi: 10.1523/JNEUROSCI.1881-14.201

    Assessing Cognitive Abilities in High-Performing Cochlear Implant Users

    Get PDF
    Despite being considered one of the most successful neural prostheses, cochlear implants (CIs) provide recipients with a wide range of speech perception performance. While some CI users can understand speech in the absence of visual cues, other recipients exhibit more limited speech perception. Cognitive skills have been documented as a contributor to complex auditory processing, such as language understanding; however, there are no normative data for existing standardized clinical tests assessing cognitive abilities in CI users. Here, we assess the impact of modality of presentation (i.e., auditory-visual versus visual) for the administration of working memory tests in high-performing CI users in addition to measuring processing speed, cognitive efficiency and intelligence quotient (IQ). Second, we relate performance on these cognitive measures to clinical CI speech perception outcomes.Methods: Twenty one post-lingually deafened, high-performing, adult CI users [age range: 52–88 years; 3 unilateral CI, 13 bimodal (i.e., CI with contralateral hearing aid), 5 bilateral CI] with clinical speech perception scores (i.e., AzBio sentences in quiet for the first-ear CI) of ≥60% were recruited. A cognitive test battery assessing auditory-visual working memory (AVWM), visual working memory (VWM), processing speed, cognitive efficiency and IQ was administered, in addition to clinical measures of speech perception in quiet (i.e., AzBio sentences in quiet). AzBio sentences were assessed in two conditions: first-ear CI only, and best-aided everyday wearing condition. Subjects also provided self-reported measures of performance and benefit from their CI using standardized materials, including the Glasgow Benefit Inventory (GBI) and the Nijmegen Cochlear Implant questionnaire (NCIQ).Results: High-performing CI users demonstrated greater VWM than AVWM recall. VWM was positively related to AzBio scores when measured in the first-ear CI only. AVWM, processing speed, cognitive efficiency, and IQ did not relate to either measure of speech perception (i.e., first-ear CI or best-aided conditions). Subjects’ self-reported benefit as measured by the GBI predicted best-aided CI speech perception performance.Conclusion: In high-performing CI recipients, visual presentation of working memory tests may improve our assessment of cognitive function

    Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae

    Get PDF
    Using morphological characters, cultural characters, large subunit and internal transcribed spacer rDNA (ITS) sequences, and provisions of the International Code of Botanical Nomenclature, this paper attempts to resolve the taxonomic and nomenclatural confusion surrounding three species of cladosporium-like hyphomycetes. The type specimen of Hormodendrum resinae, the basis for the use of the epithet resinae for the creosote fungus {either as Hormoconis resinae or Cladosporium resinae) represents the mononematous synanamorph of the synnematous, resinicolous fungus Sorocybe resinae. The phylogenetic relationships of the creosote fungus, which is the anamorph of Amorphotheca resinae, are with the family Myxotrichaceae, whereas S. resinae is related to Capronia (Chaetothyriales, Herpotrichiellaceae). Our data support the segregation of Pycnostysanus azaleae, the cause of bud blast of rhododendrons, in the recently described anamorph genus Seifertia, distinct from Sorocybe; this species is related to the Dothideomycetes but its exact phylogenetic placement is uncertain. To formally stabilize the name of the anamorph of the creosote fungus, conservation of Hormodendrum resinae with a new holotype should be considered. The paraphyly of the family Myxotrichaceae with the Amorphothecaceae suggested by ITS sequences should be confirmed with additional genes

    Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH)

    Get PDF
    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills

    Enhanced Syllable Discrimination Thresholds in Musicians

    Get PDF
    Speech processing inherently relies on the perception of specific, rapidly changing spectral and temporal acoustic features. Advanced acoustic perception is also integral to musical expertise, and accordingly several studies have demonstrated a significant relationship between musical training and superior processing of various aspects of speech. Speech and music appear to overlap in spectral and temporal features; however, it remains unclear which of these acoustic features, crucial for speech processing, are most closely associated with musical training. The present study examined the perceptual acuity of musicians to the acoustic components of speech necessary for intra-phonemic discrimination of synthetic syllables. We compared musicians and non-musicians on discrimination thresholds of three synthetic speech syllable continua that varied in their spectral and temporal discrimination demands, specifically voice onset time (VOT) and amplitude envelope cues in the temporal domain. Musicians demonstrated superior discrimination only for syllables that required resolution of temporal cues. Furthermore, performance on the temporal syllable continua positively correlated with the length and intensity of musical training. These findings support one potential mechanism by which musical training may selectively enhance speech perception, namely by reinforcing temporal acuity and/or perception of amplitude rise time, and implications for the translation of musical training to long-term linguistic abilities.Grammy FoundationWilliam F. Milton Fun

    Longitudinal maturation of auditory cortical function during adolescence

    Get PDF
    Cross-sectional studies have demonstrated that the cortical auditory evoked potential (CAEP) changes substantially in amplitude and latency from childhood to adulthood, suggesting that these aspects of the CAEP continue to mature through adolescence. However, no study to date has longitudinally followed maturation of these CAEP measures through this developmental period. Additionally, no study has examined the trial-to-trial variability of the CAEP during adolescence. Therefore, we longitudinally tracked changes in the latency, amplitude, and variability of the P1, N1, P2, and N2 components of the CAEP in 68 adolescents from age 14 years to age 17 years. Latency decreased for N1 and N2, and did not change for P1 or P2. Amplitude decreased for P1 and N2, increased for N1, and did not change for P2. Variability decreased with age for all CAEP components. These findings provide longitudinal support for the view that the human auditory system continues to mature through adolescence. Continued auditory system maturation through adolescence suggests that CAEP neural generators remain plastic during this age range and potentially amenable to experience-based enhancement or deprivation
    • …
    corecore