10 research outputs found

    Representativeness-Based Sampling Network Design for the Arctic

    Get PDF
    Resource and logistical constraints limit the frequency and extent of environmental observations, particularly in the Arctic, necessitating the development of a systematic sampling strategy to maximize coverage and objectively represent environmental variability at desired scales. Required is a quantitative methodology for stratifying sampling domains, informing site selection, and determining the representativeness of measurement sites and networks. Multivariate spatiotemporal clustering was applied to down-scaled general circulation model results and data for the State of Alaska at 2 km ✕ 2 km resolution to define multiple sets of bioclimatic ecoregions across two decadal time periods. Maps of ecoregions for the present (2000–2009) and future (2090–2099) were produced, showing how combinations of 37 bioclimatic and permafrost characteristics are distributed and how they may shift in the future. Representative sampling locations are identified on present and future ecoregion maps. A representativeness metric was developed, and representativeness maps for eight candidate sampling locations were produced. This metric was used to characterize the environmental similarity of each site. This analysis provides model-inspired insights into optimal sampling strategies, offers a framework for up-scaling measurements, and provides a down-scaling approach for integration of models and measurements. These techniques can be applied at different spatial and temporal scales to meet the needs of individual measurement campaigns. More recently, we have extended this approach to investigate pan-Arctic and tropical forest representativeness, employing remote sensing and other data products, to quantify coverage of spatial heterogeneity from international monitoring and sampling efforts. New results describing global forest site constituency and Arctic sampling regimes will be presented

    Where do early career researchers stand on Open Science practices? A survey within the Max Planck Society

    Get PDF
    Open science (OS) is of paramount importance for the improvement of science worldwide and across research fields. Recent years have witnessed a transition toward open and transparent scientific practices, but there is still a long way to go. Early career researchers (ECRs) are of crucial relevance in the process of steering toward the standardization of OS practices, as they will become the future decision makers of the institutional change that necessarily accompanies this transition. Thus, it is imperative to gain insight into where ECRs stand on OS practices. Under this premise, the Open Science group of the Max Planck PhDnet designed and conducted an online survey to assess the stance toward OS practices of doctoral candidates from the Max Planck Society. As one of the leading scientific institutions for basic research worldwide, the Max Planck Society provides a considerable population of researchers from multiple scientific fields, englobed into three sections: biomedical sciences, chemistry, physics and technology, and human and social sciences. From an approximate total population of 5,100 doctoral candidates affiliated with the Max Planck Society, the survey collected responses from 568 doctoral candidates. The survey assessed self-reported knowledge, attitudes, and implementation of different OS practices, namely, open access publications, open data, preregistrations, registered reports, and replication studies. ECRs seemed to hold a generally positive view toward these different practices and to be interested in learning more about them. Furthermore, we found that ECRs’ knowledge and positive attitudes predicted the extent to which they implemented these OS practices, although levels of implementation were rather low in the past. We observed differences and similarities between scientific sections. We discuss these differences in terms of need and feasibility to apply these OS practices in specific scientific fields, but additionally in relation to the incentive systems that shape scientific communities. Lastly, we discuss the implications that these results can have for the training and career advancement of ECRs, and ultimately, for the consolidation of OS practices

    Accurate measurements of atmospheric carbon dioxide and methane mole fractions at the Siberian coastal site Ambarchik

    Get PDF
    Sparse data coverage in the Arctic hampers our understanding of its carbon cycle dynamics and our predictions of the fate of its vast carbon reservoirs in a changing climate. In this paper, we present accurate measurements of atmospheric carbon dioxide (CO2) and methane (CH4) dry air mole fractions at the new atmospheric carbon observation station Ambarchik, which closes a large gap in the atmospheric trace gas monitoring network in northeastern Siberia. The site, which has been operational since August 2014, is located near the delta of the Kolyma River at the coast of the Arctic Ocean. Data quality control of CO2 and CH4 measurements includes frequent calibrations traced to World Meteorological Organization (WMO) scales, employment of a novel water vapor correction, an algorithm to detect the influence of local polluters, and meteorological measurements that enable data selection. The available CO2 and CH4 record was characterized in comparison with in situ data from Barrow, Alaska. A footprint analysis reveals that the station is sensitive to signals from the East Siberian Sea, as well as the northeast Siberian tundra and taiga regions. This makes data from Ambarchik highly valuable for inverse modeling studies aimed at constraining carbon budgets within the pan-Arctic domain, as well as for regional studies focusing on Siberia and the adjacent shelf areas of the Arctic Ocean.Sparse data coverage in the Arctic hampers our understanding of its carbon cycle dynamics and our predictions of the fate of its vast carbon reservoirs in a changing climate. In this paper, we present accurate measurements of atmospheric carbon dioxide (CO2) and methane (CH4) dry air mole fractions at the new atmospheric carbon observation station Ambarchik, which closes a large gap in the atmospheric trace gas monitoring network in northeastern Siberia. The site, which has been operational since August 2014, is located near the delta of the Kolyma River at the coast of the Arctic Ocean. Data quality control of CO2 and CH4 measurements includes frequent calibrations traced to World Meteorological Organization (WMO) scales, employment of a novel water vapor correction, an algorithm to detect the influence of local polluters, and meteorological measurements that enable data selection. The available CO2 and CH4 record was characterized in comparison with in situ data from Barrow, Alaska. A footprint analysis reveals that the station is sensitive to signals from the East Siberian Sea, as well as the northeast Siberian tundra and taiga regions. This makes data from Ambarchik highly valuable for inverse modeling studies aimed at constraining carbon budgets within the pan-Arctic domain, as well as for regional studies focusing on Siberia and the adjacent shelf areas of the Arctic Ocean.Peer reviewe

    Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach

    Get PDF
    FLUXNET assembles globally-distributed eddy covariance-based estimates of carbon fluxes between the biosphere and the atmosphere. Since eddy covariance flux towers have a relatively small footprint and are distributed unevenly across the world, upscaling the observations is necessary in order to obtain global-scale estimates of biosphere-atmosphere exchange from the flux tower network. Based on cross-consistency checks with atmospheric inversions, sun-induced fluorescence (SIF) and dynamic global vegetation models (DGVM), we provide here a systematic assessment of the latest upscaling efforts for gross primary production (GPP) and net ecosystem exchange (NEE) of the FLUXCOM initiative, where different machine learning methods, forcing datasets, and sets of predictor variables were employed. Spatial patterns of mean GPP are consistent among FLUXCOM and DGVM ensembles (R2 > 0.94 at 1° spatial resolution) while the majority of DGVMs are outside the FLUXCOM range for 70 % of the land surface. Global mean GPP magnitudes for 2008–2010 from FLUXCOM members vary within 106 and 130 PgC yr−1 with the largest uncertainty in the tropics. Seasonal variations of independent SIF estimates agree better with FLUXCOM GPP (mean global pixel-wise R2 ~ 0.75) than with GPP from DGVMs (mean global pixel wise R2 ~ 0.6). Seasonal variations of FLUXCOM NEE show good consistency with atmospheric inversion-based net land carbon fluxes, particularly for temperate and boreal regions (R2 > 0.92). Interannual variability of global NEE in FLUXCOM is underestimated compared to inversions and DGVMs. The FLUXCOM version which uses also meteorological inputs shows a strong co-variation of interannual patterns with inversions (R2 = 0.88 for 2001–2010). Mean regional NEE from FLUXCOM shows larger uptake than inversion and DGVM-based estimates, particularly in the tropics with discrepancies of up to several hundred gC m2 yr−1. These discrepancies can only partly be reconciled by carbon loss pathways that are implicit in inversions but not captured by the flux tower measurements such as carbon emissions from fires and water bodies. We hypothesize that a combination of systematic biases in the underlying eddy covariance data, in particular in tall tropical forests, and a lack of site-history effects on NEE in FLUXCOM are likely responsible for the too strong tropical carbon sink estimated by FLUXCOM. Furthermore, as FLUXCOM does not account for CO2 fertilization effects carbon flux trends are not realistic. Overall, current FLUXCOM estimates of mean annual and seasonal cycles of GPP as well as seasonal NEE variations provide useful constraints of global carbon cycling, while interannual variability patterns from FLUXCOM are valuable but require cautious interpretation. Exploring the diversity of Earth Observation data and of machine learning concepts along with improved quality and quantity of flux tower measurements will facilitate further improvements of the FLUXCOM approach overall

    Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems

    Get PDF
    Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season

    Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems

    Get PDF
    Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.Peer reviewe

    Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach

    Get PDF
    International audienceFLUXNET comprises globally distributed eddy-covariance-based estimates of carbon fluxes between the biosphere and the atmosphere. Since eddy covariance flux towers have a relatively small footprint and are distributed unevenly across the world, upscaling the observations is necessary to obtain global-scale estimates of biosphere-atmosphere exchange. Based on cross-consistency checks with atmospheric inversions, sun-induced fluorescence (SIF) and dynamic global vegetation models (DGVMs), here we provide a systematic assessment of the latest upscaling efforts for gross primary production (GPP) and net ecosystem exchange (NEE) of the FLUXCOM initiative, where different machine learning methods, forcing data sets and sets of predictor variables were employed. Spatial patterns of mean GPP are consistent across FLUX-COM and DGVM ensembles (R 2 > 0.94 at 1 • spatial resolution) while the majority of DGVMs show, for 70 % of the land surface, values outside the FLUXCOM range. Global mean GPP magnitudes for 2008-2010 from FLUXCOM members vary within 106 and 130 PgC yr −1 with the largest uncertainty in the tropics. Seasonal variations in independent SIF estimates agree better with FLUXCOM GPP (mean global pixel-wise R 2 ∼ 0.75) than with GPP from DGVMs (mean global pixel-wise R 2 ∼ 0.6). Seasonal variations in FLUXCOM NEE show good consistency with atmospheric inversion-based net land carbon fluxes, particularly for temperate and boreal regions (R 2 > 0.92). Interannual variability of global NEE in FLUXCOM is underestimated compared to inversions and DGVMs. The FLUXCOM version which also uses meteorological inputs shows a strong co-variation in interannual patterns with inversions (R 2 = 0.87 for 2001-2010). Mean regional NEE from FLUXCOM shows larger uptake than inversion and DGVM-based estimates, particularly in the tropics with discrepancies of up to several hundred grammes of carbon per square metre per year. These discrepancies can only partly be reconciled by carbon loss pathways that are implicit in inversions but not captured by the flux tower measurements such as carbon emissions from fires and water bodies. We hypothesize that a combination of systematic biases in the underlying eddy covariance data, in particular in tall tropical forests, and a lack of site history effects on NEE in FLUXCOM are likely responsible for the too strong tropical carbon sink estimated by FLUXCOM. Furthermore, as FLUXCOM does not account for CO 2 fertilization effects, carbon flux trends are not realistic. Overall, current FLUXCOM estimates of mean annual and seasonal cycles of GPP as well as seasonal NEE variations provide useful constraints of global carbon cycling, while interannual variability patterns from FLUXCOM are valuable but require cautious interpretation. Exploring the diversity of Earth observation data and of machine learning concepts along with improved quality and quantity of flux tower measurements will facilitate further improvements of the FLUXCOM approach overall

    Pan-Arctic soil moisture control on tundra carbon sequestration and plant productivity

    Get PDF
    Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.Peer reviewe

    Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems

    No full text
    Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net COâ‚‚ sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased COâ‚‚ sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering COâ‚‚ later in the season
    corecore