23 research outputs found

    SCOPE : SCUBA-2 Continuum Observations of Pre-protostellar Evolution - survey description and compact source catalogue

    Get PDF
    We present the first release of the data and compact-source catalogue for the JCMT Large Program SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE). SCOPE consists of 850 mu m continuum observations of 1235 Planck Galactic Cold Clumps (PGCCs) made with the Submillimetre Common-User Bolometer Array 2 on the James Clerk Maxwell Telescope. These data are at an angular resolution of 14.4 arcsec, significantly improving upon the 353 GHz resolution of Planck at 5 arcmin, and allowing for a catalogue of 3528 compact sources in 558 PGCCs. We find that the detected PGCCs have significant sub-structure, with 61 per cent of detected PGCCs having three or more compact sources, with filamentary structure also prevalent within the sample. A detection rate of 45 per cent is found across the survey, which is 95 per cent complete to Planck column densities of N-H2 > 5 x10(21) cm(-2). By positionally associating the SCOPE compact sources with young stellar objects, the star formation efficiency, as measured by the ratio of luminosity to mass, in nearby clouds is found to be similar to that in the more distant Galactic Plane, with the column density distributions also indistinguishable from each other.Peer reviewe

    The TOP-SCOPE Survey of Planck Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17

    Get PDF
    This is the final version. Available from American Astronomical Society via the DOI in this record.The low dust temperatures (<14 K) of Planck Galactic cold clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. "TOP-SCOPE" is a joint survey program targeting ∼2000 PGCCs in J = 1-0 transitions of CO isotopologues and ∼1000 PGCCs in 850 μm continuum emission. The objective of the "TOP-SCOPE" survey and the joint surveys (SMT 10 m, KVN 21 m, and NRO 45 m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis, and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, length, and mean line mass (M/L) of the G26 filament are ∼6200 M, ∼12 pc, and ∼500 Mpc-1, respectively. Ten massive clumps, including eight starless ones, are found along the filament. The most massive clump as a whole may still be in global collapse, while its denser part seems to be undergoing expansion owing to outflow feedback. The fragmentation in the G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, nonmagnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index (β) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed owing to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.German Research FoundationJoint Research Fund in AstronomyTop Talents Program of Yunnan ProvinceAcademy of FinlandMinistry of Education, Science, and TechnologyNational Research Foundation of KoreaChinese Academy of SciencesMinistry of Science and Technology of TaiwanEuropean Research Counci

    The TOP-SCOPE Survey of Planck Galactic Cold Clumps : Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17

    Get PDF
    The low dust temperatures (<14 K) of Planck Galactic cold clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. "TOP-SCOPE" is a joint survey program targeting similar to 2000 PGCCs in J = 1-0 transitions of CO isotopologues and similar to 1000 PGCCs in 850 mu m continuum emission. The objective of the "TOP-SCOPE" survey and the joint surveys (SMT 10 m, KVN 21 m, and NRO 45 m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis, and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, length, and mean line mass (M/L) of the G26 filament are similar to 6200 M-circle dot, similar to 12 pc, and similar to 500 M-circle dot pc(-1), respectively. Ten massive clumps, including eight starless ones, are found along the filament. The most massive clump as a whole may still be in global collapse, while its denser part seems to be undergoing expansion owing to outflow feedback. The fragmentation in the G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, nonmagnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index (beta) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed owing to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.Peer reviewe

    Development of an Apparatus with Induced Heat-and-mass Transfer for Drying and Hydrothermal Processing of Moist Materials

    Full text link
    The need to solve the problems of efficient use of energy resources in processes of heat-and-mass transfer which are widely used in the food and processing industries and are very power-intensive was substantiated. The prospects of application of the induced processes such as the effect of induced heat-and-mass transfer characterized by high energy efficiency and environmental friendliness were noted.Drying and hydrothermal treatment of moist raw materials with gas-tight inserts in horizontal and vertical orientations were modeled. It was established that the nature of this effect in the presence of gas-tight inserts in the solid phase inside the thermostat does not differ from the nature of the effect of induced heat-and-mass transfer in absence of such inserts.It was proved that during the induced heat-and-mass transfer, features of the flow of any volume of internal thermostat medium affect the nature of this flow for other allocated volumes. It was noted that the feature of «artificiality» and controllability of this effect makes it possible to perform certain manufacturing operations in processing different raw materials in one device without their mixing.A technical solution of an apparatus using the effect of induced heat-and-mass transfer for drying and hydrothermal treatment of moist raw materials was proposed based on the obtained experimental results and established theoretical conclusions. The productivity of the developed apparatus in hydrothermal processing of cereals makes 18 kg/h and the energy consumption is 8.1·106 J/kg of dried product. The final product is a quick-recoverable porridge that does not require cooking. It was noted that the economic attractiveness of the developed device with the effect of induced heat-and-mass transfer for drying and hydrothermal treatment consists in the ability to reduce energy consumption for these manufacturing operations by 30

    Influence of the Air Flow Velocity Relatively Thermostat Obturator on the Effectiveness of Induced Heat and Mass Transfer

    Full text link
    The object of research is the effect of induced heat and mass transfer (IHMT), which consists in the transition of the system from unstable equilibrium to stable, which is accompanied by heat dissipation due to the transition of the liquid phase in the thermostat to the gas state. One of the problematic areas of the research object is the lack of data on the energy efficiency control limits of the induced heat and mass transfer effect by such controlling parameter as the air flow velocity moving relative to the thermostat obturator.In the course of the research, an experimental technique is used to obtain and analyze the temperature kinetics of a colloidal capillary-porous body inside a thermostat during the IHMT effect. The method of calculating the heat balance is also used. These methods allow to reveal the effect of the air flow velocity relative to the thermostat obturator on the nature of the induced heat and mass transfer.It is established that the work of the air flow, which moves relative to the obturator, is the controlling parameter by means of which the IHMT «start» is organized. It is determined that the intensity of the induced heat and mass transfer can be regulated within 15...20 % by the velocity of the air flow relative to the thermostat obturators.It is established that, firstly, it is possible to control the «start» of the IHMT effect in accordance with the goal of technological processing of raw materials using this effect. And secondly, it is reasonable to change the IHMT flow rate and its efficiency by varying the airflow velocity with respect to the obturators

    Study of Microelement Distribution Uniformity in a Bulk of Dough Enriched with Dietary Supplements

    Full text link
    The expediency of introduction of dietary supplements based on the chelate complex in food systems and ensuring uniformity of their distribution was substantiated. The objective was to elucidate uniformity of distribution of microelements sorbed on carrier macromolecules and the effect of supplements on functional and technological properties of the dough preparations. Preparations from yeast, puff pastry and unleavened dough with introduced supplements based on the chelate complex were the study subjects. Distribution of the dietary supplement based on the chelate complex in the food system volume and its influence on functional and technological properties of the food systems under study was elucidated. Nuclear magnetic resonance and electron paramagnetic resonance methods, low-temperature calorimetric method and rheological study methods were used.It has been established that powdered supplements based on the stabilized chelate affect mobility and interaction of water molecules with environment of the test dough preparations. It was proved that introduction of metal chelate in the form of a powdered food supplement makes it possible to ensure uniformity of metal distribution in the volume of the preparations under study. It was determined that an increase in amount of chilled water takes place in the dough samples with an introduced dietary supplement based on the chelate complex in comparison with the control samples. The established data indicate growth of amount of bound water provided that a supplement was added. It was noted that the stabilized chelate was mainly in a saturated state since water of the dough preparations was in a «bound» state. A change of elastic properties was established in the test dough preparations with a dietary supplement based on the chelate complex. The obtained results are explained by the change of free to bound water ratio in the food systems under study.The prospects of using powdered supplements with stabilized metal chelates in technologies of food enrichment were proved. It was pointed out that the task of further studies consists in determination of distribution of other microelements of the chelates forming the basis of dietary supplements in the volume of food systems

    Design of the Conceptual Implementation of an Apparatus with the Induced Heat and Mass Transfer for Vaporization and Rectification

    Full text link
    The need to find solutions to problems on the efficient use of energy resources has been substantiated, under conditions for meeting the requirements to the environmental sustainability of production in the process of executing such technological operations as vaporization and rectification. We have identified the prospects of searching for and applying the induced processes, which are characterized by high energy efficiency and are environmentally friendly.The kinetics of temperature have been investigated under the effect from the induced heat transfer of the components of the internal thermostat volume, under condition of using different liquids in its internal environment.Our study has established the impossibility for the liquid in the inner volume thermostat to achieve the boiling temperature under condition of the effect of the induced heat and mass transfer, proven by the visual observations and by the value of its temperature. In the experiment under atmospheric pressure, the thermostat temperature was equal to 115...116 °C, while the temperature of the volumetric water did not exceed 97 °C. It was established that at the thermostat temperature of 105...106 °C and under atmospheric pressure, the ethyl alcohol temperature did not exceed 72...73 °C, and for water ‒ 83...85 °C, under the condition of the effect of the induced heat-and-mass transfer.It was found that ethyl alcohol and water are transferred to the gas state under the effect of the induced heat-and-mass transfer separately. It is possible to register the removal of the liquid phase of the mixture components based on the jump-like transition in the kinetics of the fluid temperature. It was established that the liquid phase did not boil for a mixture of ethyl alcohol with water under the effect of the induced heat-and-mass transfer at the thermostat temperature of 105 °C and under atmospheric pressure.We have proposed a conceptual solution to the technical implementation of the universal device that employs the effect of the induced heat-and-mass transfer in order to execute technological operations of vaporization and rectification excluding the boiling phase. Based on a given conceptual solution, we have built a laboratory prototype of the installation, in which vaporization is carried out under atmospheric pressure at the liquid phase temperature of 83...85 °C. The economic effect from the installation is achieved through the simplified equipment and reduction in energy consumption per product unit by larger than 1.3 times compared to the vacuum-evaporator apparatu

    Devising Techniques for Reinforcing Glued Sausage Casings by Using Different Physical Methods

    Full text link
    This paper has substantiated the development and rationalization of techniques to manufacture sausage casings from natural raw materials with predefined functional and technological properties. It is noted that the issue related to the rational utilization of intestinal raw materials and the improvement of the production economic profitability could be resolved by implementing effective technologies of glued intestinal sausage casings. The strength has been investigated of the reinforcing seam between the layers of intestinal membranes obtained by such techniques as the local tanning, local thermal coagulation resulting from passing an electric current through wet raw materials, local thermal coagulation due to the arc discharge through dried raw materials. The rational concentration of tannin in tanning solution has been determined, at which it is recommended to make a reinforcing seam on glued intestinal casings by means of local tanning. A value of the breaking load for the reinforcing seam made by using local electric currents has been derived, which is 14&nbsp;N/m. A 4.7-time increase in the breaking load has been established to occur, compared to the control sample. A value of the breaking load for the reinforcing seam obtained by applying an arc discharge has been found, which is 18&nbsp;N/m. It was noted that the breaking load had increased compared to the control sample. Working bodies for an installation were designed aimed at reinforcing glued sausage casings by such techniques as local tanning; local thermal coagulation resulting from passing an electric current through wet raw materials; local thermal coagulation as a result of arc discharge through dried raw materials. It is noted that the advantages of techniques for the reinforcement of glued sausage casings are the high breaking load and the effective utilization of raw material

    Spin crossover in Fe(II) complexes with N<sub>4</sub>S<sub>2</sub> coordination

    No full text
    Reactions of Fe­(II) precursors with the tetradentate ligand <i>S,S</i>′-bis­(2-pyridylmethyl)-1,2-thioethane (bpte) and monodentate NCE<sup>–</sup> coligands afforded mononuclear complexes [Fe­(bpte)­(NCE)<sub>2</sub>] (<b>1</b>, E = S; <b>2</b>, E = Se; <b>3</b>, E = BH<sub>3</sub>) that exhibit temperature-induced spin crossover (SCO). As the ligand field strength increases from NCS<sup>–</sup> to NCSe<sup>–</sup> to NCBH<sub>3</sub><sup>–</sup>, the SCO shifts to higher temperatures. Complex <b>1</b> exhibits only a partial (15%) conversion from the high-spin (HS) to the low-spin (LS) state, with an onset around 100 K. Complex <b>3</b> exhibits a complete SCO with <i>T</i><sub>1/2</sub> = 243 K. While the γ-<b>2</b> polymorph also shows the complete SCO with <i>T</i><sub>1/2</sub> = 192 K, the α-<b>2</b> polymorph exhibits a two-step SCO with the first step leading to a 50% HS → LS conversion with <i>T</i><sub>1/2</sub> = 120 K and the second step proceeding incompletely in the 80–50 K range. The amount of residual HS fraction of α-<b>2</b> that remains below 60 K depends on the cooling rate. Fast flash-cooling allows trapping of as much as 45% of the HS fraction, while slow cooling leads to a 14% residual HS fraction. The slowly cooled sample of α-<b>2</b> was subjected to irradiation in the magnetometer cavity resulting in a light-induced excited spin state trapping (LIESST) effect. As demonstrated by Mössbauer spectroscopy, an HS fraction of up to 85% could be achieved by irradiation at 4.2 K
    corecore