71 research outputs found

    Phase appearance or disappearance in two-phase flows

    Get PDF
    This paper is devoted to the treatment of specific numerical problems which appear when phase appearance or disappearance occurs in models of two-phase flows. Such models have crucial importance in many industrial areas such as nuclear power plant safety studies. In this paper, two outstanding problems are identified: first, the loss of hyperbolicity of the system when a phase appears or disappears and second, the lack of positivity of standard shock capturing schemes such as the Roe scheme. After an asymptotic study of the model, this paper proposes accurate and robust numerical methods adapted to the simulation of phase appearance or disappearance. Polynomial solvers are developed to avoid the use of eigenvectors which are needed in usual shock capturing schemes, and a method based on an adaptive numerical diffusion is designed to treat the positivity problems. An alternate method, based on the use of the hyperbolic tangent function instead of a polynomial, is also considered. Numerical results are presented which demonstrate the efficiency of the proposed solutions

    Sleep habits, academic performance, and the adolescent brain structure

    Get PDF
    Here we report the first and most robust evidence about how sleep habits are associated with regional brain grey matter volumes and school grade average in early adolescence. Shorter time in bed during weekdays, and later weekend sleeping hours correlate with smaller brain grey matter volumes in frontal, anterior cingulate, and precuneus cortex regions. Poor school grade average associates with later weekend bedtime and smaller grey matter volumes in medial brain regions. The medial prefrontal anterior cingulate cortex appears most tightly related to the adolescents' variations in sleep habits, as its volume correlates inversely with both weekend bedtime and wake up time, and also with poor school performance. These findings suggest that sleep habits, notably during the weekends, have an alarming link with both the structure of the adolescent brain and school performance, and thus highlight the need for informed interventions.Peer reviewe

    Internal capsule size associated with outcome in first-episode schizophrenia

    Get PDF
    Subtle structural brain abnormalities are an established finding in first-episode psychosis. Nevertheless their relationship to the clinical course of schizophrenia is controversially discussed. In a multicentre study 45 first-episode schizophrenia patients (FE-SZ) underwent standardized MRI scanning and were followed up to 1 year. In 32 FE-SZ volumetric measurement of three regions of interests (ROIs) potentially associated with disease course, hippocampus, lateral ventricle and the anterior limb of the internal capsule (ALIC) could be performed. The subgroups of FE-SZ with good (12 patients) and poor outcome (11 patients), defined by a clinically relevant change of the PANSS score, were compared with regard to these volumetric measures. Multivariate analysis of covariance revealed a significant reduced maximal cross sectional area of the left ALIC in FE-SZ with clinically relevant deterioration compared to those with stable psychopathology. There were no differences in the other selected ROIs between the two subgroups. In conclusion, reduced maximal area of ALIC, which can be interpreted as a disturbance of fronto-thalamic connectivity, is associated with poor outcome during the 1 year course of first-episode schizophrenia

    The effects of amisulpride on five dimensions of psychopathology in patients with schizophrenia: a prospective open- label study

    Get PDF
    BACKGROUND: The efficacy of antipsychotics can be evaluated using the dimensional models of schizophrenic symptoms. The D(2)/D(3)-selective antagonist amisulpride has shown similar efficacy and tolerability to other atypical antipsychotics. The aim of the present study was to determine the efficacy of amisulpride on the dimensional model of schizophrenic symptoms and tolerability in latin schizophrenic patients. METHOD: Eighty schizophrenic patients were enrolled and 70 completed a prospective open-label 3-month study with amisulpride. The schizophrenic symptoms, psychosocial functioning and side-effects were evaluated with standardized scales. RESULTS: The patients showed significant improvement in the five dimensions evaluated. Amisulpride (median final dose 357.1 mg/d) was well-tolerated without treatment-emergent extrapyramidal side-effects. CONCLUSION: Amisulpride showed efficacy on different psychopathological dimensions and was well tolerated, leading to consider this drug a first line choice for the treatment of schizophrenia

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Reward Versus Nonreward Sensitivity of the Medial Versus Lateral Orbitofrontal Cortex Relates to the Severity of Depressive Symptoms

    Get PDF
    BackgroundThe orbitofrontal cortex (OFC) is implicated in depression. The hypothesis investigated was whether the OFC sensitivity to reward and nonreward is related to the severity of depressive symptoms.MethodsActivations in the monetary incentive delay task were measured in the IMAGEN cohort at ages 14 years (n = 1877) and 19 years (n = 1140) with a longitudinal design. Clinically relevant subgroups were compared at ages 19 (high-severity group: n = 116; low-severity group: n = 206) and 14.ResultsThe medial OFC exhibited graded activation increases to reward, and the lateral OFC had graded activation increases to nonreward. In this general population, the medial and lateral OFC activations were associated with concurrent depressive symptoms at both ages 14 and 19 years. In a stratified high-severity depressive symptom group versus control group comparison, the lateral OFC showed greater sensitivity for the magnitudes of activations related to nonreward in the high-severity group at age 19 (p = .027), and the medial OFC showed decreased sensitivity to the reward magnitudes in the high-severity group at both ages 14 (p = .002) and 19 (p = .002). In a longitudinal design, there was greater sensitivity to nonreward of the lateral OFC at age 14 for those who exhibited high depressive symptom severity later at age 19 (p = .003).ConclusionsActivations in the lateral OFC relate to sensitivity to not winning, were associated with high depressive symptom scores, and at age 14 predicted the depressive symptoms at ages 16 and 19. Activations in the medial OFC were related to sensitivity to winning, and reduced reward sensitivity was associated with concurrent high depressive symptom scores

    Multidimensional upwind residual distribution schemes for the Euler and Navier-Stokes equations on unstructured grids

    No full text
    Une approche multidimensionelle pour la résolution numérique des équations d'Euler et de Navier-Stokes sur maillages non-structurés est proposée. Dans une première partie, un exposé complet des schémas de distribution, dits de "fluctuation-splitting" ,est décrit, comprenant une étude comparative des schémas décentrés, positifs et de 2ème ordre, pour résoudre l'équation de convection à coefficients constants, ainsi qu'une étude théorique et numérique de la précision des schémas sur maillages réguliers et distordus. L'extension à des lois de conservation non-linéaires est aussi abordée, et une attention particulière est portée au problème de la linéarisation conservative. Dans une deuxième partie, diverses discrétisations des termes visqueux pour l'équation de convection-diffusion sont développées, avec pour but de déterminer l'approche qui offre le meilleur compromis entre précision et coût. L'extension de la méthode aux systèmes des lois de conservation, et en particulier à celui des équations d'Euler de la dynamique des gaz, représente le noyau principal de la thèse, et est abordée dans la troisième partie. Contrairement aux schémas de distribution classiques, qui reposent sur une extension formelle du cas scalaire, l'approche développée ici repose sur une décomposition du résidu par élément en équations scalaires, modélisant le transport de variables caracteristiques. La difficulté vient du fait que les équations d'Euler instationnaires ne se diagonalisent pas, et admettent une infinité de solutions élémentaires (ondes simples) se propageant dans toutes les directions d'espace. En régime stationnaire, en revanche, les équations se diagonalisent complètement dans le cas des écoulements supersoniques, et partiellement dans le cas des écoulements subsoniques. Ainsi, les équations sous forme conservative peuvent être remplacées par un système équivalent comprenant deux équations totalement découplées, exprimant l'invariance de l'entropie et de l'enthalpie totale le long des lignes de courant, et deux autres équations, modélisant les effets purement acoustiques. En régime supersonique, celles-ci se découplent aussi, et expriment la convection le long des lignes de Mach d'invariants de Riemann généralisés. La discrétisation de ces équations par des schémas scalaires décentrés permet de simuler des écoulements continus et discontinus avec une grande précision et sans oscillations. Finalement, dans une dernière partie, l'extension aux équations de Navier-Stokes est abordée, et la discrétisation des termes visqueux par une approche éléments finis est proposée. Les résultats numériques confirment la précision et la robustesse de la méthode.Doctorat en sciences appliquéesinfo:eu-repo/semantics/nonPublishe

    Multidimensional upwind schemes for the shallow water equations

    No full text
    A multidimensional discretisation of the shallow water equations governing unsteady free-surface flow is proposed The method, based on a residual distribution discretisation, relies on a characteristic eigenvector decomposition of each cell residual, and the use of appropriate distribution schemes. For uncoupled equations, multidimensional convection schemes on compact stencils are used, while for coupled equations, either system distribution schemes such as the Lax-Wendroff scheme or scalar schemes may be used. For steady subcritical flows, the equations can be partially diagonalised into a purely convective equation of hyperbolic nature, and a set of coupled equations of elliptic nature. The multidimensional discretisation, which is second-order-accurate at steady state, is shown to be superior to the standard Lax-Wendroff discretisation. For steady supercritical flows, the equations can be fully diagonalised into a set of convective equations corresponding to the steady state characteristics. Discontinuities such as hydraulic jumps, are captured in a sharp and non-oscillatory way. For unsteady flows, the characteristic equations remain coupled. An appropriate treatment of the coupling terms allows the discretisation of these equations at the scalar level. Although presently only first-order-accurate in space and time the classical dam-break problem demonstrates the validity of the approach. © 1998 John Wiley & Sons, Ltd.FLWINinfo:eu-repo/semantics/publishe
    corecore