57 research outputs found

    Coherent signature of warming-induced extreme sub-continental boreal wildfire activity 4800 and 1100 years BP

    Get PDF
    Climate changes are expected to progressively increase extreme wildfire frequency in forests. Finding past analogs for periods of extreme biomass burning would provide valuable insights regarding what the effects of warming might be for tree species distribution, ecosystem integrity, atmospheric greenhouse gas balance, and human safety. Here, we used a network of 42 lake-sediment charcoal records across a ~2000 km transect in eastern boreal North America to infer widespread periods of wildfire activity in association with past climate conditions. The reconstructed fluctuations in biomass burning are broadly consistent with variations in ethane concentration in Greenland polar ice cores. Biomass burning fluctuations also significantly co-varied with Greenland temperatures estimated from ice cores, at least for the past 6000 years. Our retrospective analysis of past fire activity allowed us to identify two fire periods centered around 4800 and 1100 BP, coinciding with large-scale warming in northern latitudes and having respectively affected an estimated ~71% and ~57% of the study area. These two periods co-occurred with widespread decreases in mean fire-return intervals. The two periods are likely the best analogs for what could be anticipated in terms of impacts of fire on ecosystem services provided by these forests in coming decades

    Self and body part localization in virtual reality: comparing a headset and a large-screen immersive display

    Get PDF
    It is currently not fully understood where people precisely locate themselves in their bodies, particularly in virtual reality. To investigate this, we asked participants to point directly at themselves and to several of their body parts with a virtual pointer, in two virtual reality (VR) setups, a VR headset and a large-screen immersive display (LSID). There was a difference in distance error in pointing to body parts depending on VR setup. Participants pointed relatively accurately to many of their body parts (i.e. eyes, nose, chin, shoulders and waist). However, in both VR setups when pointing to the feet and the knees they pointed too low, and for the top of the head too high (to larger extents in the VR headset). Taking these distortions into account, the locations found for pointing to self were considered in terms of perceived bodies, based on where the participants had pointed to their body parts in the two VR setups. Pointing to self in terms of the perceived body was mostly to the face, the upper followed by the lower, as well as some to the torso regions. There was no significant overall effect of VR condition for pointing to self in terms of the perceived body (but there was a significant effect of VR if only the physical body (as measured) was considered). In a paper-and-pencil task outside of VR, performed by pointing on a picture of a simple body outline (body template task), participants pointed most to the upper torso. Possible explanations for the differences between pointing to self in the VR setups and the body template task are discussed. The main finding of this study is that the VR setup influences where people point to their body parts, but not to themselves, when perceived and not physical body parts are considered

    The Reading Palaeofire Database : an expanded global resource to document changes in fire regimes from sedimentary charcoal records

    Get PDF
    Sedimentary charcoal records are widely used to reconstruct regional changes in fire regimes through time in the geological past. Existing global compilations are not geographically comprehensive and do not provide consistent metadata for all sites. Furthermore, the age models provided for these records are not harmonised and many are based on older calibrations of the radiocarbon ages. These issues limit the use of existing compilations for research into past fire regimes. Here, we present an expanded database of charcoal records, accompanied by new age models based on recalibration of radiocarbon ages using IntCal20 and Bayesian age-modelling software. We document the structure and contents of the database, the construction of the age models, and the quality control measures applied. We also record the expansion of geographical coverage relative to previous charcoal compilations and the expansion of metadata that can be used to inform analyses. This first version of the Reading Palaeofire Database contains 1676 records (entities) from 1480 sites worldwide. The database (RPDv1b - Harrison et al., 2021) is available at https://doi.org/10.17864/1947.000345.Peer reviewe

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Phytoliths_Ngofouo

    No full text
    Samples, information and counts of all phytolith morphotypes identified and counted on the sequence

    Palaeo-trajectories of forest savannization in the southern Congo

    No full text
    International audienceTropical savannah and forest are thought to represent alternative stable states in ecosystem structure in some climates. The implication is that biomes are maintained by positive feedbacks, e.g. with fire, and that historical distributions could play a role in determining modern ones. In this context, climate alone does not govern transitions between biomes, and understanding the causes and pathways of such transitions becomes crucial. Here, we use a multi-proxy analysis of a 2000-year core to evaluate modes of transition in vegetation structure and fire regimes. We demonstrate a first transition ca 1540 BP, when a cyclic fire regime entered a forested landscape, eventually resulting, by ca 1060 BP, in a transition to a more open savannah-like or mosaicked structure. This pattern may parallel currently accelerating fire regimes in tropical forests suggesting that fires can savannize forests, but perhaps more slowly than feared. Finally, ca 540 BP, a drought combined with anthropogenic influences resulted in a conclusive transition to savannah, probably resembling the modern landscape in the region. We show here that fire interacted with drought to transition forest to savannah, suggesting that disturbance by fire can be a major driver of biome change

    Data from: Paleo-trajectories of forest savannization in the southern Congo

    No full text
    Tropical savanna and forest are thought to represent alternative stable states in ecosystem structure in some climates. The implication is that biomes are maintained by positive feedbacks, e.g., with fire, and that historical distributions could play a role in determining modern ones. In this context, climate alone does not govern transitions between biomes, and understanding the causes and pathways of such transitions becomes crucial. Here, we use a multi-proxy analysis of a 2000-year core to evaluate modes of transition in vegetation structure and fire regimes. We demonstrate a first transition c.1540 BP, when a cyclic fire regime entered a forested landscape, eventually resulting, by c.1060 BP, in a transition to a more open savanna-like or mosaicked structure. This pattern may parallel currently accelerating fire regimes in tropical forests suggesting that fires can savannize forests, but perhaps more slowly than feared. Finally, c.540 BP, a drought combined with anthropogenic influences resulted in a conclusive transition to savanna, probably resembling the modern landscape in the region. We show here that fire interacted with drought to transition forest to savanna, suggesting that disturbance by fire can be a major driver of biome change
    corecore