132 research outputs found

    Influence of calcium additiions on the compressive strength and microstructure of alkali-activated ceramic sanitaryware

    Get PDF
    This is the peer reviewed version of the following article: Reig, L., Soriano Martinez, Lourdes, Tashima, M.M., Borrachero Rosado, María Victoria, Monzó Balbuena, José Mª, Paya Bernabeu, Jorge Juan. (2018). Influence of calcium additiions on the compressive strength and microstructure of alkali-activated ceramic sanitaryware.Journal of the American Ceramic Society, 101, null, 3094-3104. DOI: 10.1111/jace.15436 , which has been published in final form at http://doi.org/10.1111/jace.15436. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The ceramic sanitary-ware market generates large amounts of waste, both during the production process and due to construction and demolition practices. In this paper, the effect of different amounts and calcium sources (calcium hydroxide Ca(OH)2, calcium aluminate cement CAC, Portland cement PC) on the alkaline activation of ceramic sanitary-ware waste (CSW) was assessed. Blended samples were activated with NaOH and sodium silicate solutions and cured for 3 and 7 days at 65°C. The maximum amount of calcium source-type added to the system varied according to its influence on the compactability of the mortars.CSW was physico-chemically characterized and the compressive strength development of activated samples was assessed on the mortars. The nature of the reaction products was analyzed in pastes, by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy and microscopic studies. The results show a great positive influence with the addition of moderate amounts of Ca(OH)2, PC and CAC on the mechanical properties. Among the typical hydrates usually observed in plain water-hydrated PC or CAC, only AH3 and a small amount of C3AH6 were identified in the alkali-activated CSW/CAC blended pastes, which indicates that Al and Ca from PC, CAC and Ca(OH)2 are taken up in the newly formed (N,C)-A-S-H or C-A-S-H gels.Spanish Ministry of Science and Innovation, Grant/Award Number: APLIGEO BIA2015-70107-R, GEOCEDEM BIA 2011-26947; Electron Microscopy Service of the Universitat Politecnica de Valencia; FEDERReig, L.; Soriano Martinez, L.; Tashima, M.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Paya Bernabeu, JJ. (2018). Influence of calcium additiions on the compressive strength and microstructure of alkali-activated ceramic sanitaryware. Journal of the American Ceramic Society. 101:3094-3104. https://doi.org/10.1111/jace.15436S30943104101Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750-763. doi:10.1016/j.cemconres.2011.03.016Halicka, A., Ogrodnik, P., & Zegardlo, B. (2013). Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials, 48, 295-305. doi:10.1016/j.conbuildmat.2013.06.063Medina, C., Frías, M., & Sánchez de Rojas, M. I. (2012). Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Construction and Building Materials, 31, 112-118. doi:10.1016/j.conbuildmat.2011.12.075Medina, C., Sánchez de Rojas, M. I., & Frías, M. (2012). Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cement and Concrete Composites, 34(1), 48-54. doi:10.1016/j.cemconcomp.2011.08.015Guerra, I., Vivar, I., Llamas, B., Juan, A., & Moran, J. (2009). Eco-efficient concretes: The effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste Management, 29(2), 643-646. doi:10.1016/j.wasman.2008.06.018Pacheco-Torgal, F., & Jalali, S. (2010). Reusing ceramic wastes in concrete. Construction and Building Materials, 24(5), 832-838. doi:10.1016/j.conbuildmat.2009.10.023Alves, A. V., Vieira, T. F., de Brito, J., & Correia, J. R. (2014). Mechanical properties of structural concrete with fine recycled ceramic aggregates. Construction and Building Materials, 64, 103-113. doi:10.1016/j.conbuildmat.2014.04.037Medina, C., Banfill, P. F. G., Sánchez de Rojas, M. I., & Frías, M. (2013). Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Construction and Building Materials, 40, 822-831. doi:10.1016/j.conbuildmat.2012.11.112Reig, L., Borrachero, M. V., Monzó, J. M., Savastano, H., Tashima, M. M., & Payá, J. (2015). Use of Ceramic Sanitaryware as an Alternative for the Development of New Sustainable Binders. Key Engineering Materials, 668, 172-180. doi:10.4028/www.scientific.net/kem.668.172Reig L Soriano L Borrachero MV Monzó J Payá J A new binder from the alkali activation of ceramic sanitary-ware waste Proceedings of the 34th Annual Cement and Concrete Science Conference, and Workshop on Waste Cementation, Sheffield, United Kingdom 2014 291 294Reig, L., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2016). Influence of calcium aluminate cement (CAC) on alkaline activation of red clay brick waste (RCBW). Cement and Concrete Composites, 65, 177-185. doi:10.1016/j.cemconcomp.2015.10.021Arbi, K., Palomo, A., & Fernández-Jiménez, A. (2013). Alkali-activated blends of calcium aluminate cement and slag/diatomite. Ceramics International, 39(8), 9237-9245. doi:10.1016/j.ceramint.2013.05.031García-Lodeiro, I., Fernández-Jiménez, A., & Palomo, A. (2013). Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends. Cement and Concrete Research, 52, 112-122. doi:10.1016/j.cemconres.2013.03.022Reig, L., Tashima, M. M., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2013). Alkaline Activation of Ceramic Waste Materials. Waste and Biomass Valorization, 4(4), 729-736. doi:10.1007/s12649-013-9197-zReig, L., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2014). Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Construction and Building Materials, 63, 214-222. doi:10.1016/j.conbuildmat.2014.04.023Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Cheeseman, C. R., & Payá, J. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, 98-106. doi:10.1016/j.conbuildmat.2013.01.031Garcia-Lodeiro, I., Carcelen-Taboada, V., Fernández-Jiménez, A., & Palomo, A. (2016). Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Construction and Building Materials, 105, 218-226. doi:10.1016/j.conbuildmat.2015.12.079Fernández-Jiménez, A., Palomo, Á., Vazquez, T., Vallepu, R., Terai, T., & Ikeda, K. (2008). Alkaline Activation of Blends of Metakaolin and Calcium Aluminate. Journal of the American Ceramic Society, 91(4), 1231-1236. doi:10.1111/j.1551-2916.2007.02002.xCriado, M., Fernández-Jiménez, A., & Palomo, A. (2007). Alkali activation of fly ash: Effect of the SiO2/Na2O ratio. Microporous and Mesoporous Materials, 106(1-3), 180-191. doi:10.1016/j.micromeso.2007.02.055Fernández-Jiménez, A., Vázquez, T., & Palomo, A. (2011). Effect of Sodium Silicate on Calcium Aluminate Cement Hydration in Highly Alkaline Media: A Microstructural Characterization. Journal of the American Ceramic Society, 94(4), 1297-1303. doi:10.1111/j.1551-2916.2010.04242.xBernal, S. A., de Gutierrez, R. M., Provis, J. L., & Rose, V. (2010). Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research, 40(6), 898-907. doi:10.1016/j.cemconres.2010.02.003Pacewska, B., Nowacka, M., Antonovič, V., & Aleknevičius, M. (2012). Investigation of early hydration of high aluminate cement-based binder at different ambient temperatures. Journal of Thermal Analysis and Calorimetry, 109(2), 717-726. doi:10.1007/s10973-012-2233-6Mas, M. A., Monzó, J., Payá, J., Reig, L., & Borrachero, M. V. (2016). Ceramic tiles waste as replacement material in Portland cement. Advances in Cement Research, 28(4), 221-232. doi:10.1680/jadcr.15.00021Hidalgo, A., García, J. L., Alonso, M. C., Fernández, L., & Andrade, C. (2009). Microstructure development in mixes of calcium aluminate cement with silica fume or fly ash. Journal of Thermal Analysis and Calorimetry, 96(2), 335-345. doi:10.1007/s10973-007-8439-3Pacewska, B., Wilińska, I., & Nowacka, M. (2011). Studies on the influence of different fly ashes and Portland cement on early hydration of calcium aluminate cement. Journal of Thermal Analysis and Calorimetry, 106(3), 859-868. doi:10.1007/s10973-011-1570-1Fernández-Carrasco, L., & Vázquez, E. (2009). Reactions of fly ash with calcium aluminate cement and calcium sulphate. Fuel, 88(9), 1533-1538. doi:10.1016/j.fuel.2009.02.018Fernández-Carrasco, L., Torréns-Martín, D., & Martínez-Ramírez, S. (2012). Carbonation of ternary building cementing materials. Cement and Concrete Composites, 34(10), 1180-1186. doi:10.1016/j.cemconcomp.2012.06.016García Lodeiro, I., Macphee, D. E., Palomo, A., & Fernández-Jiménez, A. (2009). Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cement and Concrete Research, 39(3), 147-153. doi:10.1016/j.cemconres.2009.01.003Lavat, A. E., Trezza, M. A., & Poggi, M. (2009). Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Management, 29(5), 1666-1674. doi:10.1016/j.wasman.2008.10.019Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., & Macphee, D. E. (2011). Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cement and Concrete Research, 41(9), 923-931. doi:10.1016/j.cemconres.2011.05.006Fernández-Carrasco, L., & Vázquez, T. (1996). Aplicación de la espectroscopia infrarroja al estudio de cemento aluminoso. Materiales de Construcción, 46(241), 39-51. doi:10.3989/mc.1996.v46.i241.540Rees, C. A., Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2007). Attenuated Total Reflectance Fourier Transform Infrared Analysis of Fly Ash Geopolymer Gel Aging. Langmuir, 23(15), 8170-8179. doi:10.1021/la700713gGranizo, M. L., Alonso, S., Blanco-Varela, M. T., & Palomo, A. (2004). Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction. Journal of the American Ceramic Society, 85(1), 225-231. doi:10.1111/j.1151-2916.2002.tb00070.xLiu, Y., Yan, C., Qiu, X., Li, D., Wang, H., & Alshameri, A. (2016). Preparation of faujasite block from fly ash-based geopolymer via in-situ hydrothermal method. Journal of the Taiwan Institute of Chemical Engineers, 59, 433-439. doi:10.1016/j.jtice.2015.07.01

    Influence of calcium aluminate cement (CAC) on alkaline activation of red clay brick waste (RCBW)

    Get PDF
    In this paper, the effect of calcium aluminate cement (CAC) additions on the alkali activation of red clay brick waste (RCBW) was studied at room temperature and at 65 C. RCBW was partially replaced with CAC (0e50 wt.%) and blends were activated with NaOH and sodium silicate solutions. The compressive strength evolution was tested on mortars and the nature of the reaction products was analysed by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, microscopic studies and pH measurements. The results show that the use of CAC accelerates the activation process of RCBW so that 50 MPa were obtained in the blended mortars containing 40 wt.% CAC cured for 3 days at room temperature. CAC did not undergo normal hydration and only the C3AH6 phase was identified in the pastes blended with more than 30 wt.% CAC and cured at 65 C, while the main reaction product was a cementitious gel containing Ca and Al from CAC.The authors are grateful to the Spanish Ministry of Science and Innovation for supporting this study through Project GEOCEDEM BIA 2011-26947, and to FEDER funding.Reig Cerdá, L.; Soriano Martínez, L.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Paya Bernabeu, JJ. (2016). Influence of calcium aluminate cement (CAC) on alkaline activation of red clay brick waste (RCBW). Cement and Concrete Composites. 65:177-185. https://doi.org/10.1016/j.cemconcomp.2015.10.021S1771856

    Cement equivalence factor evaluations for fluid catalytic cracking catalyst residue

    Full text link
    Fluid catalytic cracking catalyst residue (FC3R) is a waste material that can be used as a Portland cement replacement in pastes, mortars, and concrete. The flow table results show that FC3R is a water demanding addition; nevertheless, this effect can be compensated with the use of superplasticizers. The pozzolanic activity of FC3R was studied observing the mechanical strength evolution with time. Pastes and mortars with FC3R incorporated show higher mechanical strengths than control specimens, indicating the pozzolanic activity of the waste. Cement equivalence factor (k-factor) evaluations were carried out. The k-factor values for the FC3R pastes and mortars were always greater than one, indicating that in order to maintain the same compressive mechanical strength of the control specimen it is sufficient to replace cement with a smaller amount of catalyst residue, due to the high pozzolanic activity of FC3R. There is a strong agreement between the k-factor values obtained in pastes and mortars.This work was supported by Ministerio de Ciencia y Tecnologia, Spain (Project MAT 2001-2694).Paya Bernabeu, JJ.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Velazquez Rodriguez, S. (2013). Cement equivalence factor evaluations for fluid catalytic cracking catalyst residue. Cement and Concrete Composites. 39:12-17. https://doi.org/10.1016/j.cemconcomp.2013.03.011S12173

    Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process

    Full text link
    This paper assesses the use of alkali activation technology in the valorization of a spent fluid catalytic cracking (FCC) catalyst, which is a residue derived from the oil-cracking process, to produce geopolymer binders. In particular, the effects of activation conditions on the structural characteristics of the spent catalyst- based geopolymers are determined. The zeolitic phases present in the spent catalyst are the main phases participating in the geopolymerization reaction, which is driven by the conversion of the zeolitic material to a highly Al-substituted aluminosilicate binder gel. Higher alkali content and SiO2/Na2O ratio lead to a denser structure with a higher degree of geopolymer gel formation and increased degree of crosslinking, as identified through 29Si MAS NMR. These results highlight the feasibility of using spent FCC catalyst as a precursor for geopolymer production.This study was sponsored by research scholarship BES-2008-002440 and EEBB-2011-43847 from the Ministerio de Ciencia y Tecnologia of Spain, the European regional development fund (FEDER), and the Universitat Politecnica de Valencia (Spain). The participation of SAB and JLP was funded by the Australian Research Council through the Discovery Projects program, and also including partial funding through the Particulate Fluids Processing Centre, a Special Research Centre of the ARC. The authors wish to acknowledge the Advanced Microscopy Facility at The University of Melbourne for assistance with the electron microscopy experiments conducted in this study.Rodriguez Martinez, ED.; Bernal, SA.; Provis, JL.; Gehman, JD.; Monzó Balbuena, JM.; Paya Bernabeu, JJ.; Borrachero Rosado, MV. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel. 109:493-502. https://doi.org/10.1016/j.fuel.2013.02.053S49350210

    New developments with cold asphalt concrete binder course mixtures containing binary blended cementitious filler (BBCF)

    Get PDF
    A weakness in early strength and the need for longer curing times in the case of cold bituminous emulsion mixtures (CBEMs) compared to hot mix asphalt have been cited as barriers to the wider utilization of these mixtures. A binary blended filler material produced from high calcium fly ash (HCFA) and a fluid catalytic cracking catalyst (FC3R) was found to be very effective in providing microstructural integrity with a novel fast-curing cold asphalt concrete for the binder course (CACB) mixture. Balanced oxide compositions within the novel filler were identified as responsible for an enhanced hydration reaction, resulting in a very high early strength and a significant improvement in permanent deformation and fatigue resistance. Improved water sensitivity for progressive hydration with the new binary filler was also established while SEM analysis confirmed the formation of hydration products after various curing ages. © 2016 Elsevier Lt
    corecore