129 research outputs found

    Dynamics of Planetesimals due to Gas Drag from an Eccentric Precessing Disk

    Full text link
    We analyze the dynamics of individual kilometer-size planetesimals in circumstellar orbits of a tight binary system. We include both the gravitational perturbations of the secondary star and a non-linear gas drag stemming from an eccentric gas disk with a finite precession rate. We consider several precession rates and eccentricities for the gas, and compare the results with a static disk in circular orbit. The disk precession introduces three main differences with respect to the classical static case: (i) The equilibrium secular solutions generated by the gas drag are no longer fixed points in the averaged system, but limit cycles with frequency equal to the precession rate of the gas. The amplitude of the cycle is inversely dependent on the body size, reaching negligible values for ∌50\sim 50 km size planetesimals. (ii) The maximum final eccentricity attainable by small bodies is restricted to the interval between the gas eccentricity and the forced eccentricity, and apsidal alignment is no longer guaranteed for planetesimals strongly coupled with the gas. (iii) The characteristic timescales of orbital decay and secular evolution decrease significantly with increasing precession rates, with values up to two orders of magnitude smaller than for static disks. Finally, we apply this analysis to the Îł\gamma-Cephei system and estimate impact velocities for different size bodies and values of the gas eccentricity. For high disk eccentricities, we find that the disk precession decreases the velocity dispersion between different size planetesimals, thus contributing to accretional collisions in the outer parts of the disk. The opposite occurs for almost circular gas disks, where precession generates an increase in the relative velocities.Comment: 11 pages, 9 figures. Accepted in MNRA

    Proefverslagen IRIS 2003

    Get PDF

    Gap Formation in the Dust Layer of 3D Protoplanetary Disks

    Full text link
    We numerically model the evolution of dust in a protoplanetary disk using a two-phase (gas+dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating and locally isothermal. The code follows the three dimensional distribution of dust in a protoplanetary disk as it interacts with the gas via aerodynamic drag. In this work, we present the evolution of a disk comprising 1% dust by mass in the presence of an embedded planet for two different disk configurations: a small, minimum mass solar nebular (MMSN) disk and a larger, more massive Classical T Tauri star (CTTS) disk. We then vary the grain size and planetary mass to see how they effect the resulting disk structure. We find that gap formation is much more rapid and striking in the dust layer than in the gaseous disk and that a system with a given stellar, disk and planetary mass will have a different appearance depending on the grain size and that such differences will be detectable in the millimetre domain with ALMA. For low mass planets in our MMSN models, a gap can open in the dust disk while not in the gas disk. We also note that dust accumulates at the external edge of the planetary gap and speculate that the presence of a planet in the disk may facilitate the growth of planetesimals in this high density region.Comment: 5 page, 4 figures. Accepted for publication in Astrophysics & Space Scienc

    Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous Solar Nebula

    Full text link
    It has recently been shown that the terrestrial planets and asteroid belt can be reproduced if the giant planets underwent an inward-then-outward migration (the "Grand Tack"; Walsh et al 2011). Inward migration occurs when Jupiter opens a gap and type II migrates inward. The planets "tack" and migrate outward when Saturn reaches the gap-opening mass and is caught in the 3:2 resonance with Jupiter. The aim is to test the viability of the Grand Tack model and to study the dynamical evolution of Jupiter and Saturn during their growth from 10 Earth masses cores. We have performed numerical simulations using a grid-based hydrodynamical code. Most of our simulations assume an isothermal equation of state for the disk but a subset use a fully-radiative version of the code. For an isothermal disk the two phase migration of Jupiter and Saturn is very robust and independent of the mass-growth history of these planets provided the disk is cool enough. For a radiative disk the we find some outcomes with two phase migrations and others with more complicated behavior. We construct a simple, 1-D model of an evolving viscous disk to calculate the evolution of the disk's radiative properties: the disk transitions from radiative to isothermal from its outermost regions inward in time. We show that a two-phase migration is a natural outcome at late times even under the limiting assumption that isothermal conditions are required. Thus, our simulations provide strong support for the Grand Tack scenario.Comment: 16 pages, 21 figures, accepted in Astronomy and Astrophysic

    Giant Planet Formation and Migration

    Get PDF
    © 2018, The Author(s). Planets form in circumstellar discs around young stars. Starting with sub-micron sized dust particles, giant planet formation is all about growing 14 orders of magnitude in size. It has become increasingly clear over the past decades that during all stages of giant planet formation, the building blocks are extremely mobile and can change their semimajor axis by substantial amounts. In this chapter, we aim to give a basic overview of the physical processes thought to govern giant planet formation and migration, and to highlight possible links to water delivery.S.-J. Paardekooper is supported by a Royal Society University Research Fellowship. A. Johansen is supported by the Knut and Alice Wallenberg Foundation, the Swedish Research Council (grant 2014-5775) and the European Research Council (ERC Starting Grant 278675-PEBBLE2PLANET)

    Against all odds? Forming the planet of the HD196885 binary

    Full text link
    HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose orbit places it at the limit for orbital stability. The presence of a planet in such a highly perturbed region poses a clear challenge to planet-formation scenarios. We investigate this issue by focusing on the planet-formation stage that is arguably the most sensitive to binary perturbations: the mutual accretion of kilometre-sized planetesimals. To this effect we numerically estimate the impact velocities dvdv amongst a population of circumprimary planetesimals. We find that most of the circumprimary disc is strongly hostile to planetesimal accretion, especially the region around 2.6AU (the planet's location) where binary perturbations induce planetesimal-shattering dvdv of more than 1km/s. Possible solutions to the paradox of having a planet in such accretion-hostile regions are 1) that initial planetesimals were very big, at least 250km, 2) that the binary had an initial orbit at least twice the present one, and was later compacted due to early stellar encounters, 3) that planetesimals did not grow by mutual impacts but by sweeping of dust (the "snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab was formed not by core-accretion but by the concurent disc instability mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical Astronomy (Special issue on EXOPLANETS

    Planet formation in Binaries

    Full text link
    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.Comment: Review chapter to appear in "Planetary Exploration and Science: Recent Advances and Applications", eds. S. Jin, N. Haghighipour, W.-H. Ip, Springer (v2, numerous typos corrected

    Embryos grown in the dead zone: Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids

    Full text link
    In the borders of the dead zones of protoplanetary disks, the inflow of gas produces a local density maximum that triggers the Rossby wave instability. The vortices that form are efficient in trapping solids. We aim to assess the possibility of gravitational collapse of the solids within the Rossby vortices. We perform global simulations of the dynamics of gas and solids in a low mass non-magnetized self-gravitating thin protoplanetary disk with the Pencil code. We use multiple particle species of radius 1, 10, 30, and 100 cm. The dead zone is modeled as a region of low viscosity. The Rossby vortices excited in the edges of the dead zone are very efficient particle traps. Within 5 orbits after their appearance, the solids achieve critical density and undergo gravitational collapse into Mars sized objects. The velocity dispersions are of the order of 10 m/s for newly formed embryos, later lowering to less than 1 m/s by drag force cooling. After 200 orbits, 38 gravitationally bound embryos were formed inside the vortices, half of them being more massive than Mars. The embryos are composed primarily of same-sized particles. We conclude that the presence of a dead zone naturally gives rise to a population of protoplanetary cores in the mass range of 0.1-0.6 Earth masses, on very short timescales.Comment: 4+3 pages (letter+online supplement), 3+1 figures. Accepted by A&

    Spatially resolved generation profiles for building, land and water-bound PV: a case study of four Dutch energy transition scenarios

    Get PDF
    Alongside a transition from steerable and centralized traditional electricity generation to intermittent and more decentralized renewable electricity generation from solar panels and wind turbines, Dutch energy transition scenarios project a widespread deployment of heat pumps and electric vehicles towards 2050. While clearly contributing to the decarbonization of the Dutch energy system, these developments impose challenges regarding electricity supply-demand mismatch and grid congestion. Spatially resolved electricity demand and supply profiles are required to gain a better insight into where and when such problems are likely to occur within the different scenarios. The present paper focuses on Dutch solar energy supply and features the construction of geodatabases of scenario-specific, spatially resolved electricity generation profiles for building, land and water-bound PV. Country-level PV capacities are geographically distributed based on spatial variance in roof PV potential and availability of suitable land and water use areas. Corresponding electricity generation profiles are constructed using historical meteorological measurements, a diffuse fraction model and a anisotropic transposition model. Empirically found performance ratio profiles are applied to account for a multitude of performance loss factors, including shading, dust and inverter efficiency. In 2050, building-bound capacity is projected to show only limited overlap with both land-bound and water-bound PV capacity. On the other hand, regions with considerable water-bound PV capacity also tend to show considerable land-bound PV capacity. Compared to the present-day situation, yearly country-level PV electricity generation is projected to be a factor 18.5, 15.7, or 7.7 higher in 2050 when respectively following the Regional, National or International Steering scenarios.</p
    • 

    corecore