
Space Science Reviews manuscript No.
(will be inserted by the editor)

Giant planet formation and migration

Sijme-Jan Paardekooper · Anders
Johansen

Received: date / Accepted: date

Abstract Planets form in circumstellar discs around young stars. Starting
with sub-micron sized dust particles, giant planet formation is all about grow-
ing 14 orders of magnitude in size. It has become increasingly clear over the
past decades that during all stages of giant planet formation, the building
blocks are extremely mobile and can change their semimajor axis by substan-
tial amounts. In this chapter, we aim to give a basic overview of the physical
processes thought to govern giant planet formation and migration, and to
highlight possible links to water delivery.
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planets and satellites: gaseous planets · protoplanetary discs

1 Introduction

For many centuries, ideas of how planets come into being were necessarily
aimed at explaining the Solar system. The observation that the orbits of the
planets in the Solar system lie more or less in a single plane led to the Nebular
hypothesis, developed originally by Emanuel Swedenborg and Immanuel Kant
and independently by Pierre-Simon Laplace in the 18th century: the planets
were born in a cloud of gas around the Sun that we now identify with proto-
planetary discs observed around young stars. The wealth of data available on
bodies in the Solar system and their histories shaped the ideas of planet for-
mation into very detailed scenarios and explanation as to why the architecture
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of our planetary system looks the way it does. One example is the separation
between the inner Solar system with the terrestrial planets close to the Sun,
while gas giant planets can be found further out. The classical explanation
for this dichotomy has been that further out, especially beyond the water ice
line at a few Astronomical Units (AU) from the Sun, much more material was
available in the form of solids to rapidly build big objects.

This made the discovery of the first extrasolar planet around a Solar-type
star, the hot Jupiter 51 Peg b (Mayor and Queloz 1995), all the more a sur-
prise. Here we have a gas giant planet like Jupiter, but not in an orbit of 12
years, but 5 days. It was soon realised away that the most straightforward
explanation for this class of planets was that they were formed further out in
colder regions and subsequently migrated inward due to interaction with the
disc (Lin et al. 1996). Since then, migration has become an essential ingredi-
ent in planet formation theory. Interestingly, the ideas that are now invoked
for the migration of hot Jupiters long predate the discovery of 51 Peg b (Lin
and Papaloizou 1979; Goldreich and Tremaine 1980), but they never made it
into the standard picture because there was no evidence for large-scale inward
migration in the Solar system.

However, while simple models of migration can explain the existence of hot
Jupiters, from the population of extrasolar planets it is clear that there is a
wide possible range of outcomes in terms of final orbital periods. Most giant
planets do not become hot Jupiters, and in general planets are found in orbits
that range from less than a day all the way up to several 100s of years. Clearly,
some planets have migrated inward over vast distances, while others appear to
have experienced little or no migration. Over the past decades, various models
of disc migration have become more and more sophisticated in an attempt to
account for this diversity (for a recent review see Baruteau et al. 2014).

It is now becoming more and more clear that growth and migration are
intimately linked. This is why in this chapter, rather than treating formation
and migration separately, we go through the story of planet formation roughly
in chronological order, and for each stage highlight the migration processes
that are important and how they may affect further growth. We will discuss
the two main scenarios for giant planet formation: core accretion and disc
fragmentation. At all times, we focus on the basic physical concepts only, in
the hope to keep the text accessible for those not familiar with planet formation
and migration.

This chapter is organised as follows: we start in section 2 with an intro-
duction to the birth environment of planets, namely protoplanetary discs. We
focus only on the ingredients we need in order to discuss planet formation and
migration; a more detailed introduction on the subject can be found elsewhere
in this volume. We go on in section 3 to describe the first steps in the two
competing models of core accretion and disc fragmentation. As it turns out,
the first step in disc fragmentation leaves us already with massive planets,
while core accretion needs a few more steps to catch up, building large objects
from initially small solid particles. These steps are discussed in sections 4 - 8,
starting with a discussion on the migration of small solid bodies in section 4,
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followed by an overview of how massive solid cores could form in section 5.
Section 6 considers the migration of such cores. Migration of massive planets,
formed by either core accretion or disc fragmentation, is dealt with in sec-
tion 7. In section 8 we discuss gas accretion and show maps for the formation
of planets that include pebble accretion and planetary migration. We finally
discuss in section 9 how all these processes affect possible water delivery to
terrestrial planets, before we end with concluding remarks in section 10.

2 Protoplanetary discs

The discs around young stars that are the birthplace of planetary systems are
discussed in detail elsewhere in this volume. Here, we introduce a very simple,
axisymmetric toy model of a disc that we will use to introduce giant planet
formation and migration.

2.1 Global disc properties

First of all, consider the mid plane (z = 0) of the disc. Discs are known to
survive for many dynamical time scales (one dynamical time scale is basically
a local orbit), which means they must be close to equilibrium with respect to
gravitational and centrifugal forces,

rΩ2 ≈ GM∗
r2

, (1)

where r is the radial distance to the central star, Ω is the angular velocity
and M∗ is the mass of the central star. In other words, the angular velocity Ω
must be close to its Keplerian value

ΩK =

√
GM∗
r3

. (2)

This immediately leads to the very important observation that Keplerian discs
rotate differentially, and one can define a shear rate

S = −r dΩ
dr
≈ 3

2
Ω, (3)

the last approximation holding for discs that are almost Keplerian.
The Keplerian angular velocity, as given by (2), is an exact equilibrium

solution if no other forces besides gravity act on the disc. It could represent a
circular disc of non-interacting particles (any non-circular motion is excluded
by the assumption of axisymmetry). Real protoplanetary discs consist of gas
and dust, where both components interact with themselves and with each
other, and the simple picture above has to be modified accordingly.

During most of the lifetime of the disc, the gaseous component is dynami-
cally the most important since it contains most of the mass. The most obvious
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modification of the Keplerian picture concerns gas pressure since it can affect
the radial force balance. For gas of density ρ and pressure p, the equilibrium
angular velocity is found from

rΩ2 = rΩ2
K +

1

ρ

∂p

∂r
. (4)

Therefore, any radial pressure gradient modifies the local angular velocity.

For a gaseous disc to be in equilibrium in the vertical direction, the vertical
component of the stellar gravity has to be balanced by a pressure gradient,

1

ρ

∂p

∂z
= −∂Φ

∂z
, (5)

where Φ indicates the gravitational potential. If we take the disc to be vertically
isothermal , which is usually a good approximation in the bulk of the disc where
most of the mass resides (e.g. Woitke et al. 2009), so that p = c2sρ with cs the
isothermal sound speed, we can easily solve for the density, yielding

ρ(z) = ρ(z = 0) exp

(
Φ(z)− Φ(z = 0)

c2s

)
≈ ρ(z = 0) exp

(
−Ω

2
Kz

2

2c2s

)
, (6)

the last approximation being valid in the limit z � r. Therefore, the vertical
profile of the disc is roughly a Gaussian, and one can define a disc thickness
H,

H =
cs
ΩK

(7)

and an aspect ratio h = H/r. The disc thickness is determined by the local
temperature through cs, and for protoplanetary discs we usually expect h ∼
0.03− 0.1, depending on the radial location and the evolutionary stage of the
disc. In all cases, the disc can be assumed to be thin, i.e. h� 1, which means
that the angular velocity is close to Keplerian, see (4).

Protoplanetary discs are also observed to accrete, or, more accurately, a sig-
nature of ongoing accretion is regularly observed on the central star (Ménard
and Bertout 1999). If disc material is to flow onto the central star, it has to
somehow lose its angular momentum. The exact mechanisms of angular mo-
mentum transport in protoplanetary discs are subject of very active research,
but here we restrict ourselves to the standard α-prescription: we assume that
angular momentum transport can be modelled as a viscous process, with a
kinematic viscosity that is set by a parameter α,

ν = αcsH, (8)

where α is usually taken to be 0.001−0.01 to explain observed accretion rates.
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Fig. 1 Local model of a protoplanetary disc. Consider a small patch rotating around the
central star at the local orbital velocity Ω. Within the patch, define a Cartesian coordinate
frame so that circular motion in the full disc corresponds to a velocity in the y-direction in
the patch.

2.2 Local disc model

It is often useful to consider a local model of a protoplanetary disc, often called
the shearing sheet or the shearing box, see figure 1. Consider a small patch
of the disc, rotating at r = r0 at the local angular velocity Ω0. Now define a
local Cartesian coordinate system

x = r − r0, (9)

y = r0 (ϕ− ϕ0 −Ω0t) , (10)

z = z. (11)

The effective potential, with contributions from gravity due to the central star
and a centrifugal potential from orbital motion, acting on the patch is

Φeff = Φ∗(r, z)−
1

2
Ω0r

2 ≈ −Ω0S0x
2 +

1

2
Ω2

0z
2, (12)

where the approximation is obtained by expanding the effective potential up
to second order in x and z.

Particle motion in the rotating patch under the influence of this effective
potential plus the contribution from a massive perturber takes the form of
Hill’s lunar problem,

ẍ− 2Ω0ẏ = 2Ω0S0x−
∂Φp

∂x
, (13)

ÿ + 2Ω0ẋ = −∂Φp

∂y
, (14)

z̈ = −Ω2
0z −

∂Φp

∂z
, (15)

where Φp is the gravitational potential due to a planet. Unperturbed motion
in the patch, corresponding to Keplerian rotation in the full disc, is given by
ẋ = ż = 0 and ẏ = −S0x (setting Φp = 0). Therefore, the Keplerian shear of
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the full disc is replaced by a linear shear in the local patch. One can either
take the sheet to be unbounded in the horizontal directions or apply modified
periodic boundary conditions1.

While the shearing sheet or box makes the analysis of several problems
much easier, the simplicity comes at a price: for example, it is impossible to
determine the direction to the central star (it is located on the x-axis, but both
directions are equivalent). Therefore, there can be no accretion flow through
the patch. Despite such limitations, the shearing sheet / box is a very powerful
tool to analyse and simulate the dynamics of protoplanetary discs.

3 The first steps of growing giant planets

There are two competing scenarios of how giant planets form. The standard
model, referred to as the core accretion model, builds giant planets from the
bottom up: first, a core of typically a few Earth masses is built out of the solids
present in the disc, in a similar way as terrestrial planets are formed, after
which large amounts of gas are accreted on top of this core. In an alternative
model, referred to as the disc instability model, giant planets collapse directly
from the disc through a gravitational instability.

3.1 Gravitational instabilities

The two competing scenarios of how giant planets are formed therefore diverge
from the very start. In the disc instability model, we start from a massive pro-
toplanetary disc, relatively early in the lifetime of the disc. The simplest pos-
sible setup in which to study gravitational instabilities is the periodic shearing
sheet, where we neglect any variation in y, so that the governing equations
become

∂Σ

∂t
+

∂

∂x
(Σu) = 0, (16)

∂u

∂t
+ u

∂u

∂x
− 2Ωv = 2ΩSx− ∂Φd

∂x
− 1

Σ

∂p

∂x
, (17)

∂v

∂t
+ u

∂v

∂x
+ 2Ωu = 0, (18)

where the velocity v = (u, v)T and the gravitational potential of the disc Φd is
calculated from Poisson’s equation, assuming all mass is concentrated in the
plane z = 0,

∂2Φd

∂x2
+
∂2Φd

∂z2
= 4πGΣδ(z). (19)

1 While in the y-direction ordinary periodic boundary conditions can be applied, in the
x direction we have to correct for the shear



7

For simplicity, we take the equation of state to be barotropic, i.e. p = p(Σ).
As the basic state, take a constant surface density, u = 0 and v = −Sx, the
latter representing Keplerian shear.

Assume small perturbations Σ′, u′ and v′, all ∝ exp(i(kx − ωt)). The
gravitational potential perturbation can be found from(

∂2

∂z2
− k2

)
Φ′d = 4πGΣ′δ(z), (20)

using a Gaussian surface of vanishing height,

Φ′d = −2πGΣ′

|k|
exp(−|kz|). (21)

Using the above expression, evaluated at z = 0, together with only linear
terms in Σ′, u′ and v′, and p′ = c2sΣ

′, we find the following relations for the
amplitudes,

−iωΣ′ +Σiku′ = 0, (22)

−iωu′ − 2Ωv′ = −ik

(
c2s −

2πGΣ

|k|

)
Σ′

Σ
, (23)

−iωv′ + (2Ω − S)u′ = 0, (24)

from which we can deduce the dispersion relation for density waves,

ω2 = κ2 − 2πGΣ|k|+ c2sk
2, (25)

where κ = 2Ω(2Ω−S) is the epicyclic frequency. In the dispersion relation, we
see the stabilising effects of rotation (κ2) and pressure (c2s ) and the destabilising
effect of self-gravity. The most unstable wavelength is given by

|kmin| = πGΣ/c2s , (26)

for which

ω2
min = κ2

(
1− 1

Q2

)
, (27)

where
Q =

κcs
πGΣ

(28)

is the Toomre Q parameter (Safronov 1960; Toomre 1964). The disc is unstable
to axisymmetric (i.e., no y dependence) perturbations for Q < 1. Therefore, in
order for density perturbations to grow large, we need a disc that is massive
(large Σ) and cold (low cs). Note that this Q-criterion only applies to axisym-
metric, razor-thin discs. Discs of finite thickness tend to be more stable for a
given Σ and cs (Mamatsashvili and Rice 2010).

Non-axisymmetric razor-thin discs show instability at larger values of Q.
This can be understood qualitatively from the fact that an axisymmetric setup
necessarily involves conservation of angular momentum, which substantially
limits the ability of material to move radially. This may seem good news if we
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Fig. 2 Local simulations of a gravitationally unstable disc for two different cooling rates.
Shown is log10Σ. Left panel: β = 10 leads to quasi-steady gravito-turbulence. Right panel:
at β = 3, the disc fragments into bound objects.

want to build giant planets, in the sense that it is easier to get large density
perturbations, but at the same time non-axisymmetry unlocks a defence mech-
anism of the disc against collapse: spiral density waves. These waves dissipate
energy, increasing the temperature and hence Q.

It is therefore not straightforward to make a disc unstable. If we for example
extract energy from the sheet at a specified rate

dU

dt
= −βΩU, (29)

where U is the internal energy of the gas and β is a constant, and thereby
lowering Q, taking the disc towards instability, this cooling can in principle be
balanced by heating through wave dissipation, leading to a quasi-steady state
often referred to as gravito-turbulence. In order to beat the disc’s defences so
that it fragments into bound objects, cooling needs to be rapid enough so that
the heating can not keep up (Gammie 2001). The exact limit is difficult to
establish because the problem is fraught with numerical difficulties (Meru and
Bate 2011; Paardekooper et al. 2011b), and, at least for razor-thin discs, there
is a stochastic element to disc fragmentation (Paardekooper 2012). However,
since realistic calculations make the cooling time fall off very rapidly with
distance to the central star, it is clear that disc fragmentation will only occur in
the outer parts of protoplanetary discs, typically beyond 50 AU (Rafikov 2005).
Examples of local simulations of gravitationally unstable discs are shown in
figure 2, for two values of the dimensionless cooling rate β. The left panel
(β = 10) shows steady gravito-turbulence, while the right panel (β = 3) shows
a fragmented disc.

From (26), we can deduce that for Q ∼ 1, the most unstable wavelength is
H. Therefore, fragment masses will be

Mfrag ∼ ΣH2. (30)
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For Q ∼ 1, and approximating κ ≈ Ω, we get

ΣH2

M∗
∼ h3. (31)

In the outer regions of protoplanetary discs, h is probably at least 0.1, so
that fragments will initially have at least the mass of Jupiter. A more realistic
calculation by Rafikov (2005) results in fragment masses of at least 5 times
the mass of Jupiter. And this is only the initial mass of the fragment: it is
embedded in a massive disc (by construction), which may still be experiencing
infall from the surrounding molecular cloud. It is very difficult to stop any of
this material from accreting onto the fragment, and for example Kratter et al.
(2010) conclude that if discs fragment, they are more likely to produce brown
dwarfs rather than giant planets. A possible solution is to move these planets
inward so that they overflow their Roche lobe and lose mass (Boley et al. 2010;
Nayakshin 2010).

Despite these problems, and in addition the many uncertainties that haunt
the thermal evolution of fragments (for a recent review see Kratter and Lodato
2016), disc fragmentation is still on the table as a possible way to form giant
planets; its appeal coming mainly from the short time scale on which it can
generate planets: since it is a dynamical instability, planets form roughly on a
dynamical time scale. This is of particular interest for giant planets observed
at very large distances from their central star (Marois et al. 2008), where
dynamical time scales are long and core accretion would take much longer
than the disc life time. This rapid formation mechanism is also appealing
because it appears to be able to jump over many difficult problems that the
core accretion model has (see however Section 7.4).

3.2 Dust coagulation

The core accretion model starts with the smallest solid building blocks that
are present in the disc, namely sub-micron dust particles that are present in
the interstellar medium as well. In this scenario, the first step is to grow these
particles by sticking them together whenever they meet. Modelling this growth
process is complicated by the fact that a particle of given size can collide with
another particle of any size: in other words, the process in non-local in size
space. Some insight can be gained though by considering monodisperse growth:
at all times, all particles are assumed to have the same size.

If the particles of size a have number density n and geometrical cross-
section σ, then the average time between collisions is given by

τcol =
1

nσ∆v
, (32)

where ∆v is the relative velocity between particles. This relative velocity can
for example come from Brownian motion

∆vBM =

√
16kBT

πm
, (33)
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where m is the mass of a single particle. Other sources of relative velocities
include turbulence and dust drift (see below).

Assuming perfect sticking, every collision leads to a doubling in the mass,
so

dm

dt
≈ m

τcol
= ρdσ∆v, (34)

where ρd = mn is the (constant) mass density of dust particles. Focusing on
Brownian motion only, which is typically the dominant contribution to relative
velocities up to particle sizes of ∼ 1 µm (Dullemond and Dominik 2005), we
find that

dm

dt
= Km1/6, (35)

for some constant K, which can be integrated to

m(t) =

(
m

5/6
0 +

5

6
Kt

)6/5

, (36)

where m0 is the mass of the particles at t = 0. Similar calculations can be
done for other sources of relative velocities, and they tend to reproduce the
early phases of full numerical simulations quite well (e.g. Ormel et al. 2009;
Birnstiel et al. 2010).

While perfect sticking is quite a good approximation early on, when parti-
cles grow and relative velocities increase at some point collisions start to have
a different outcome, from bouncing (Zsom et al. 2010), where particles just
bounce off each other without any mass transfer, or even fragmentation, where
a collision results in particles that are all smaller in size than the original par-
ticles. For silicate grains, the ”bouncing barrier” occurs at sizes of roughly one
millimetre. However, at this stage the composition of the particles matters a
lot; for example, for particles made of water ice the velocity at which they frag-
ment is an order of magnitude larger than for silicate grains (Gundlach and
Blum 2015). It therefore helps to have water ice around to grow beyond one
millimetre, as anyone who has seen golf-ball-sized hail stones can appreciate.

There is much more to say about these early stages of planet formation, see
for example the recent reviews Johansen et al. (2014a); Birnstiel et al. (2016).
Growing to larger sizes brings new problems as well, which we discuss next.

4 Dust and pebble migration (Type 0)

Even the smallest dust particle interacts with the surrounding gas through
frictional forces. The nature of the interaction depends on the size of the
particle with respect to the mean free path of the gas molecules. Small particles
(smaller than 1 cm in typical protoplanetary discs) feel free-streaming gas
molecules and find themselves in the Epstein regime, where the drag force is
given by (assuming subsonic relative velocities between gas and dust),

Ffric = −4

3
ρcsσ∆v, (37)
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where σ is the collisional cross-section of the dust particle and ∆v is the
relative velocity between gas and dust (Dullemond and Dominik 2004). One
can define a friction time

tfric =
m |∆v|
|Ffric|

∝ m

σ
, (38)

where m is the mass of the dust particle. This friction time is basically the
time it takes for the dust particle to adjust to the motion of the gas. Since it is
proportional to m/σ, which for spherical particles is proportional to the size of
the particle2, the smallest particles are tightly coupled to the gas, while larger
boulders can move relatively independently of the gas. Differently shaped par-
ticles will have different values of m/σ and will therefore the magnitude of the
drag force will be different for a given size. For example, for fractal aggregates
of fractal dimension . 2, m/σ approaches a constant, and therefore the fric-
tion time becomes independent of size, which can have profound implications
for coagulation (e.g. Okuzumi et al. 2012). By writing the equations in terms
of tfric they become valid for any particle shape (Testi et al. 2014).

For dust particles that are large compared to the mean free path of the gas,
drag occurs via gas molecular viscosity as a boundary layer forms around the
particle and experimental results are available (e.g. Lain et al. 1999). The exact
form of the drag force depends on whether the flow around the dust particle is
laminar (Stokes friction) or turbulent (Newtonian friction). We refer the reader
to the paper by Whipple (1972) for a discussion of these friction regimes.

The equations of motion of a dust particle with radial velocity vd and
angular velocity Ωd, including friction, are

dvd

dt
= rΩ2

d − rΩ2
K −

ΩKvd

St
, (39)

d

dt

(
r2Ωd

)
= −r

2ΩK (Ωd −Ω)

St
, (40)

where we have defined a Stokes number St = ΩKtfric and ignored any radial
velocity of the gas. Two interesting limits are St� 1 (tightly coupled particles)
and St� 1 (loosely coupled particles).

Consider first the case St � 1. From (40) we see that Ωd ≈ Ω. Inserting
this in (39) and solving for the terminal radial velocity (i.e. dvd/dt = 0), we
get,

vd =
St

ΩK
(rΩ2 − rΩ2

K) =
St

ΩK

1

ρ

dp

dr
, (41)

where in the last step we have used (4). Note that dust particles always move
towards regions of highest gas pressure, and that for moderate gradients in
pressure (|d log p/d log r| ≈ 2 . . . 3), vd ∼ Sth2rΩK.

2 Note that any contribution from the gravitational field of the particle can be safely
ignored in the cross-section. When gravity starts to play a role, we are in the regime of Type
I migration (see Section 6)
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In the opposite limit of St � 1, we have that dust particles stay close to
their equilibrium orbit Ωd ≈ ΩK, but with a torque applied as given by (40).
Assuming the orbit stays circular, this torque translates into a radial velocity

vd = −2r (ΩK −Ω)

St
≈ 1

StΩK

1

ρ

dp

dr
, (42)

where the last approximation is valid in the limit h� 1. Again, dust particles
drift towards regions of high pressure, but now vd ∼ h2rΩK/St.

By ignoring dvd/dt and writing Ωd = ΩK + δΩ with δΩ � ΩK one can
solve for the radial drift speed for arbitrary values of St (Weidenschilling 1977),

vd =
St

1 + St2

1

ΩKρ

dp

dr
. (43)

Therefore, we expect inward drift of dust, since in protoplanetary discs the
pressures is generally higher in the inner regions, on time scales that can be as
short as a few 100 dynamical time scales for particles that have St ∼ 1. This is
an enormous challenge for planet formation theory, since as soon as particles
grow to St ∼ 1 (1 cm - 1 m in typical protoplanetary discs), you lose them
through very efficient drift (Weidenschilling 1977).

Dust drift occurs in the vertical direction as well, in which case it is usually
called settling. Since the gas is completely pressure supported in the vertical
direction, settling speeds can be quite fast (typically, the settling time scale
is 1/St times the dynamical time scale for small particles). This allows for
particles to grow by sweeping up smaller particles on their way to the mid plane
of the disc, similar to what happens on Earth when raindrops form in clouds
(Dullemond and Dominik 2005). If the gas disc is turbulent, dust settling will
be reduced (e.g. Johansen and Klahr 2005; Fromang and Papaloizou 2006).

5 Forming giant cores

In this section we review the physics of forming the cores of giant planets by
planetesimal accretion and pebble accretion. We also discuss the formation of
planetesimals, as this stage has important implications for the growth rates of
protoplanets.

5.1 Planetesimal formation

Radial drift limits the particle sizes that can be obtained by dust coagula-
tion. Very fluffy ice particles can in principle break through the drift barrier
(Okuzumi et al. 2012), due to their low internal density of down to 10−5 times
the material density. The material density actually does not play a role in
the growth time-scale in the Epstein drag force regime (see discussion in Jo-
hansen et al. 2014b), but fluffy grains enter the Stokes regime and increase
their friction time, and hence the drift time-scale if the particle is already
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large, proportional to the squared size. However, this fluffy growth requires
very small ice monomers, of 0.1 µm in size, in order to avoid compactifica-
tion and allow sticking beyond 10 m/s. Another threat to fluffy ice growth is
the erosion of the aggregates by small dust grains. Krijt et al. (2015) demon-
strated that the fluffy ice particles do not grow beyond a Stokes number of
unity, unless erosion by small dust grains is ineffective.

The streaming instability provides another avenue for making planetesi-
mals (Youdin and Goodman 2005; Youdin and Johansen 2007; Johansen and
Youdin 2007). This instability feeds of the relative velocity between parti-
cles (moving sub-Keplerian in the orbit and radially inwards) and gas (moving
strongly sub-Keplerian in the orbit and radially outwards3). Above a threshold
metallicity the particles in the mid-plane layer form dense nearly axisymmetric
filaments due to particle pile-ups (Johansen et al. 2009b; Bai and Stone 2010).
The threshold metallicity is around 1.5% at a Stokes number of St ∼ 0.1, but
increases towards both smaller and larger particles (Carrera et al. 2015). The
case of marginally coupled particles (St ∼ 0.3) has been studied most exten-
sively. These particles reach densities up to 10,000 times the local gas density in
the absence of self-gravity (Johansen et al. 2012, 2015). Including self-gravity
leads to the formation of planetesimals of a wide range of sizes, following the
approximate differential mass distribution dN/dM ∝ M−1.6 (Johansen et al.
2015; Simon et al. 2016). This distribution function is dominated in number
by the smallest planetesimals and in mass by the largest. The chacteristic sizes
of the planetesimals that form following gravitational collapse are around 100
km. This planetesimal birth size is in good qualitative agreement with the ob-
served steepening of the size distribution above 100 km sizes of both asteroids
and Kuiper belt objects (Bottke et al. 2005; Morbidelli et al. 2009; Sheppard
and Trujillo 2010).

The streaming instability scenario has mainly been tested under the as-
sumption that there are no other sources of turbulence in the disc region
under consideration. The streaming instability can actually interact construc-
tively with turbulence driven by the magnetorotational instabilility. Some of
the energy in the turbulence cascades to large scales where it organises into
long-lived zonal flows, alternating axisymmetric regions of faster and slower
orbital speed (Johansen et al. 2009a; Simon et al. 2012). The zonal flow forms
a geostrophic structure in force balance with the pressure gradient from a
pressure bump that peaks between the points of fastest and slowest orbital
speed. These pressure bumps in turn can collect very large pebbles (boulders)
of meter sizes (Johansen et al. 2006; Dittrich et al. 2013). The concentrations
of boulders can in turn trigger the streaming instability by accelerating the
gas towards the Keplerian speed inside of the pressure bump, leading to the
formation of planetesimals (Johansen et al. 2007).

The dead zone extending out to several 10 AU has too high ohmic restivity
for the magnetorotational instability to grow. Exterior of this dead zone the

3 The streaming instability analysis ignores the possible presence of a radial accretion
flow of the gas
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development of the magnetorotational instability will be influenced by ambipo-
lar diffusion. Bai and Stone (2014) demonstrated that turbulence can develop
very strong pressure bumps and zonal flows in these regions. In the dead zone
itself several hydrodynamical instabilities are currently under investigation to
drive turbulence. The vertical shear instability arises as a consequence of ra-
dial temperature gradients, which induce vertical shear, but the instability
furthermore requires a very low cooling time to suppress buoyancy oscillations
(Nelson et al. 2013; Lin and Youdin 2015). In order to obtain the most real-
istic cooling times, Stoll and Kley (2014) performed radiative transfer simula-
tions of turbulence driven by the vertical shear instability and found turbulent
stresses on the order of 10−4 in the mid-plane of the disc. This low level of
turbulence is promising for a constructive interaction with the streaming insta-
bility, but simulations of the vertical shear instability including particle drag
on the gas have not been reported in the literature yet. Richard et al. (2016)
showed in simulations of relatively thick protoplanetary discs that the vertical
shear instability can lead to the formation of long-lived vortices, likely sta-
bilised against destruction by the sub-critical baroclinic instability (Klahr and
Bodenheimer 2003; Lesur and Papaloizou 2010; Raettig et al. 2013). Raettig
et al. (2015) included the back-reaction of the pebbles in simulations of the
baroclinic instability and found that the vortices are actually destroyed by the
back-reaction, a result that is also known for single vortices that are set as an
initial condition (Johansen et al. 2004; Crnkovic-Rubsamen et al. 2015). The
relative roles of the streaming instability and the vertical shear and baroclinic
instabilities in concentrating pebbles is still poorly understood and should be
an important priority for future research.

5.2 Planetesimal and pebble accretion

The largest planetesimals that form at the planetesimal formation stage will
continue to grow towards planetary masses by accreting other planetesimals
and the remaining pebbles. The accretion rate of a protoplanet is given by
(Safronov 1969)

dM

dt
= πR2ρplavpla

[
1 +

(
ve

vpla

)2
]
. (44)

Here M and R are the mass and the radius of the planetesimals, ρpla is the
spatial density of planetesimals, vpla is the approach speed of the planetesimals
and ve is the escape speed from the surface of the core. The gravitational
focusing term in the hard brackets can boost planetesimal accretion rates
significantly if the random planetesimal speed is slower than the escape speed
of the protoplanet. The escape speed of a planetesimal can be roughly written
as ve ∼ 1 m/s R/km, and therefore gravitational focusing is important for
random speeds below 1 m/sR/km. In the limit of strong gravitational focusing,
we get the expression

dM

dt
= πR2ΣpΩ

6p−1

ζ2
. (45)
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Here the parameter ζ ≡ vr/vH defines the random planetesimal speed4 relative
to the Hill speed vH = ΩRH and p ≡ R/RH is the size of the protoplanet rela-
tive to its Hill radius. The expression is only valid when ζ > 1. The parameter
p can be written as

p =
R

RH
=

(
4πGρ•
9Ω2

)−1/3

≈ 0.001
( r

5 AU

)−1
(

ρ•
2.0 g cm−3

)−1/3

. (46)

This allow us to write the growth rate as

dM

dt
≈ 3.8ME Myr−1 fpla

(
M

ME

)2/3 ( r

5 AU

)−2

ζ−2 . (47)

We have here scaled the planetesimal column density according to Σpla =
10 g cm−2 fpla (r/AU)−1. The value of ζ makes it tricky to evaluate the ac-
tual growth rate of planetesimal accretion. In principle, ζ can be less than
unity if gas drag or mutual collisions damp the scale-height of the planetesi-
mals (Rafikov 2004). However, planetesimals must be small (< 1 km) for this
process to be efficient. Greenzweig and Lissauer (1990) found that a single
scattering of a planetesimal increases its random motion to a few times the
Hill speed. Realistic values of the planetesimal accretion rates can be obtained
from simulations of a large number of protoplanets growing simultaneously.
Levison et al. (2010) showed that the protoplanets excite the planetesimal or-
bits to very high random speeds and that planetesimals are transported rapidly
away from the formation region of the giant planets.

The pebbles left over from the planetesimal formation stage provide an-
other source of planetary growth. Pebbles can be accreted very efficiently due
to the friction with the gas. While most planetesimals are scattered by a
growing protoplanet, pebbles of optimal sizes are accreted from the entire Hill
radius (Johansen and Lacerda 2010; Ormel and Klahr 2010; Lambrechts and
Johansen 2012). The optimally-accreted pebbles have a Stokes number of ap-
proximately ∼ 0.1, in good agreement with the results of coagulation models
(Brauer et al. 2007; Birnstiel et al. 2012; Lambrechts and Johansen 2014).

The growth rate by pebble accretion in the Hill accretion regime can be
written as

Ṁ = 2RHvHΣp , (48)

where Σp is the pebble column density. This expression is valid above the tran-
sition mass from Bondi accretion to Hill accretion, which happens at around
10−3 ME in the inner regions of the protoplanetary disc. We futhermore as-
sumed that the accretion is in the 2-D regime, i.e. that the Hill radius is larger
than the scale-height of the particle mid-plane layer. These two requirements
are typically fulfilled at the same time (Lambrechts and Johansen 2014; Bitsch
et al. 2015). Scaling the pebble accretion rate with typical quantities gives

ṀH,2D = 210ME Myr−1 fp

(
St

0.1

)2/3(
M

ME

)2/3 ( r

5 AU

)−0.5

. (49)

4 Note that the random planetesimal speed is not quite the same as the planetesimal
approach speed, since the latter include the effect of the Keplerian shear.



16

Here we incorporated the Stokes number dependence in the expression (Lam-
brechts and Johansen 2014; Morbidelli et al. 2015) and introduced a param-
eter fp that gives the pebble column density relative to a nominal value of
Σp = 10 g cm−2 fp (r/AU)−1. The growth rates by pebble accretion is approx-
imately two orders of magnitude higher than the planetesimal accretion rate
(which is in itself in upper limit, given the uncertain value of ζ).

The growth time-scale is M/Ṁ , so

tgrow = 5000 yr f−1
p

(
St

0.1

)−2/3(
M

ME

)−2/3 ( r

5 AU

)1/2

(50)

However, the true value of fp is expected to be � 1 due to the rapid drift of
pebbles towards the star and the gradual density depletion of the protoplan-
etary disc by accretion. Indeed, the growth maps presented in section 8 have
fp values in the range 0.01− 0.1.

An advantage of the very high accretion rates obtainable with pebble ac-
cretion is that planets can outgrow Type I migration. We discuss this in section
8. But first we will review the migration of planets.

6 Low mass planet migration (Type I)

In this section we consider the migration of low-mass planets. We will give
a precise definition of what constitutes a low-mass planet later on, but as a
rough guide consider planets less massive than Neptune. While planets have a
surface and are therefore subject to aerodynamic drag, when planets reach a
mass of roughly 1% of that of the Earth, gravitational interactions will start to
dominate. The resulting migration is usually referred to as Type I migration
(Ward 1997). Below, we will introduce a simple toy model that highlights the
physics of these gravitational interactions. For readers who want more details,
Baruteau et al. (2014) provide a recent more in-depth review.

Consider the local, two dimensional shearing sheet introduced in section
2.2, and put a planet of mass Mp at the origin of the local coordinate system
by adding a gravitational potential to the equations,

Φp = − GMp√
x2 + y2 + ε2

, (51)

where ε is a smoothing length which is at the moment added to keep all
gravitational forces finite everywhere, but for which we will give a physical
interpretation later on.

6.1 Scattering torque

Particles streaming past the planet, on initially unperturbed orbits, feel the
gravitational force from the planet and therefore change their trajectory. A
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Mp

x0

Mp

x0

Fig. 3 Left: gravitational scattering of a particle by a planet in the local patch. The particle
comes from the top, and its unperturbed Keplerian motion takes it past the planet, where it
is scattered and put on a different trajectory. Right: horseshoe trajectories near the planet.

simple model capturing this is the so-called impulse approximation (Lin and
Papaloizou 1979), where it is assumed that the particle motion remains un-
perturbed until it reaches the planet, at which point it is scattered, see the left
panel of figure 3. Throughout we assume that the interaction of the particle
with the planet is weak. The total change in the x-component of the velocity
is given by

∆vx ≈ −
∫ ∞

0

GMpx0

(x2
0 + y(t)2 + ε2)

3/2
dt. (52)

Taking y(t) = −Spx0t, where a subscript p means evaluation at the location
of the planet, the integral evaluates in a straightforward way to,

∆vx ≈ −
GMp

(x2
0 + ε2)Sp

. (53)

From equations (13) and (14) we find that the total energy

E =
1

2
v2
x +

1

2
v2
y −ΩpSpx

2 + Φp (54)

of the particle is conserved. Neglecting any changes in x coordinate, and eval-
uating E far away from the planet so that the contribution of Φp can be
neglected, energy conservation dictates that ∆v2

x + ∆v2
y = 0. Assuming the

change in vy to be small compared to the unperturbed orbital motion,(
GMp

(x2
0 + ε2)Sp

)2

+ 2Spx0∆vy ≈ 0, (55)

which leads to

∆vy(x0) ≈ − (GMp)
2

2S3
px0 (x2

0 + ε2)
2 . (56)
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As a consequence of Newton’s third law, the planet feels a force when it scatters
a particle. The encounter rate of particles with impact parameter x is |Spx|,
and if the disc has surface density Σ(x), the force per unit radius in the y-
direction is

fy(x) = ∆vy(x)Σ(x)|Spx|, (57)

and the total force on the planet can be found by integrating over x. Note that
for constant Σ, fy is an odd function of x and therefore the total force evaluates
to zero. This is a consequence of the simplification that is the shearing sheet
compared to the full disc. We can restore some of the properties of the full
disc by letting S be a function of x5, and approximate

1

S2
≈ 1 + 3x/rp

S2
p

, (58)

which is consistent with (3). Then, for constant surface density the total force
is

Fy =

∫ ∞
−∞

fy(x)dx ≈ −3 (GMp)
2
Σ

2rpS2
pε

2
(59)

The torque due to such scattering events on the planet is given by Γ = rpFy,
which then takes the form

Γs = γs
q2

ε2
Σpr

6
pΩ

2
p, (60)

where γs is a constant of order unity, and q is the planet-to-star mass ratio.
It should be noted that although for simplicity we have focused on a simple
shearing sheet disc model, the same functional form of the scattering torque
is found in global cylindrical geometry, in which γs depends on the radial
gradients of the gas density and temperature (e.g. Tanaka et al. 2002).

6.2 Horseshoe drag

The scattering analysis presented above is only valid for impact parameters
that are large enough. Closer to the planet, the change in vy is large enough
to change the sign of vy, and the result is material executing horseshoe orbits.
The right panel of figure 3 shows particle trajectories close to the planet. These
horseshoe turns are responsible for a different kind of torque: the horseshoe
drag (Ward 1991).

We can play the same game as in the previous section, by considering a
particle with impact parameter x0 (see the right panel of figure 3). Assuming
the particle makes a symmetric turn, the change in y-velocity is

∆vy(x0) = 2Spx0, (61)

5 The same effect can be achieved by choosing an appropriate surface density profile
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and therefore the total force can be found from

Fy =

∫ w

−w
∆vy(x)Σ(x)|Spx|dx, (62)

where w is the maximum impact parameter for which a horseshoe turn occurs,
or, in other words, the half-width of the horseshoe region.

As in the scattering calculation, the shearing sheet is too symmetric to
yield a torque: we either have to allow S2 to vary with x, or Σ. Expanding
any of these quantities to first order in x, we get

Fy = fh
S2

pΣpw
4

rp
, (63)

where fh is a constant of order unity and depends on the gradients in S and
Σ.

Interestingly, it is relatively straightforward to calculate w (Masset et al.
2006; Paardekooper and Papaloizou 2009b). Equations (13) and (14) admit a
Jacobi integral,

J = Ω0S0x
2 − Φp −

1

2

(
ẋ2 + ẏ2

)
. (64)

Consider the particle orbit that gets closest to the planet. Clearly, the impact
parameter of this orbit is the maximum impact parameter for which a horse-
shoe turn will occur. At x = y = 0, there is an X-point in the particle stream
lines, and therefore all velocities must vanish. Therefore, the outermost horse-
shoe orbit has J = −Φp(x = 0, y = 0). Far away from the planet, motion is
purely Keplerian again, with ẋ = Φp = 0 and ẏ = −Spx. Equating J for both
locations gives

GMp

ε
= Sp

(
Ωp −

Sp

2

)
x2. (65)

Solving for x gives the half-width of the horseshoe region w,

w =

√
8GMp

3εΩ2
p

. (66)

The final form of the horseshoe drag is then

Γh = rpFy = γh
q2

ε2
Σpr

6
pΩ

2
p, (67)

where γh is a constant of order unity. Remarkably, the two types of torque (60)
and (67) have exactly the same form and only differ by a numerical prefactor
of order unity. As in the case of the scattering torque, it should be noted
that although for simplicity we have focused on a simple shearing sheet disc
model, the same functional form of horseshoe drag is found in global cylindrical
geometry, in which γh depends on the radial gradients of the gas density and
temperature (e.g. Ward 1991; Paardekooper and Papaloizou 2008).
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Fig. 4 Schematic stream lines for a non-migrating (left panel) and a migrating (right panel)
planet. The vertical coordinate is ϕ, for which the full 2π is shown, and the horizontal
coordinate is r. The planet is denoted by the black circles, the blue arrows indicate the disc
rotation in the frame of the planet, and the black arrows indicate the velocity of material
in the corotation region, which is marked red. In the right panel, the planet is migrating to
the left, which means that in the rest frame of the planet, unperturbed disc material moves
outward. Material in the green region gets transported from one side of the planet to the
other in a single horseshoe turn.

It should be noted that in a full disc, the horseshoe region is a closed sys-
tem. Particles leaving the domain after a horseshoe turn at the bottom of the
right panel of figure 3 come back at the top and make another horseshoe turn.
Unless the particle loses its identity before returning, the total torque averaged
over many encounters will be zero. This is a process that is called saturation.
Another way of thinking about this is that the total angular momentum con-
tent of the closed system that is the horseshoe region is finite, and it therefore
only has a finite amount of angular momentum to give to the planet. Unless
’fresh’ angular momentum can be supplied to the horseshoe region, perhaps
through viscous diffusion (e.g. Masset 2001), the horseshoe drag will only be
a transient phenomenon. Fortunately, the conditions in typical protoplanetary
discs allow for unsaturated horseshoe drag in large regions (Paardekooper et al.
2011a; Bitsch et al. 2013).

6.3 Dynamic torques (Type III migration)

From the discussion above, it is clear that for the horseshoe drag to keep
going, some form of asymmetry between the two horseshoe legs is needed. In
the local model, a radial surface density gradient will do the trick; in a global
isothermal gaseous disc, a gradient in specific vorticity ∇ × v/Σ is needed
(Ward 1991; Paardekooper and Papaloizou 2009a; Casoli and Masset 2009),
while in a global adiabatic disc a gradient in entropy is important (Baruteau
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and Masset 2008; Paardekooper and Papaloizou 2008; Masset and Casoli 2009).
These results were all obtained by taking the orbit of the planet as fixed, and
measuring or calculating the torque on the planet.

Interestingly, a migrating planet naturally introduces asymmetry between
the two horseshoe legs. This is illustrated schematically in figure 4.The left
panel shows the horseshoe (or corotation) region around a non-migrating
planet in red. Note that the planet is shifted to the top (and bottom because
the domain is periodic in ϕ) to show the full extent of the horseshoe region.
In the rest frame of the planet, material in the red region executes horseshoe
turns all the time, while material outside the red region is on circular orbits
(note that we neglect any effect of the scattering torque here), in the direction
of the blue arrows.

The right panel of figure 4 shows the case of a migrating planet, with the
planet moving towards the left. For the sake of definiteness, let us assume
the planet is migrating inwards, so that the star is located far away to the
left. In the rest frame of the planet, gas on circular orbits now moves to the
right, again in the direction of the blue arrows. Note that the red corotation
region gets deformed, one side getting thinner. This region in fact migrates
inward together with the planet. On the thin side of the corotation region,
material in the green region executes a single horseshoe turn. This material
was on circular orbits before in the inner disc (left of the planet, outside the
corotation region), and gets transferred to the outer disc (right of the planet,
again outside the corotation region).

In this single horseshoe turn, the material exerts a torque on the planet
as usual. However, note that there is no corresponding turn at the bottom of
the figure, where only red material executes horseshoe turns. Therefore, all
we need for the horseshoe legs to be asymmetric is a difference between the
red and the green material. Such a torque can be called dynamic because it
requires the planet to move through the disc. Suppose for example that the
red region is underdense compared to the rest of the disc, perhaps through
partial gap opening (see section 7.1). Then the torque on the planet is neg-
ative, because of the green material getting pushed outward. Moreover, this
torque is proportional to the migration rate: the faster the migration, the more
green material, the stronger the torque. Hence there exists a positive feedback
loop (e.g. Masset 2008) with the possibility of an instability, termed runaway
migration by Masset and Papaloizou (2003). Since there exist steady forms of
very fast migration, Artymowicz (2004) introduced the term Type III migra-
tion, since Type II migration is reserved for massive, gap-opening planets (see
section 7).

Originally, Type III migration was studied for intermediate-mass planets
(roughly Saturn’s mass) with a slight density depression in their corotation
region (Masset and Papaloizou 2003), which naturally leads to an asymmetry
between the red and green region in the right panel of figure 4. Such an asym-
metry can also be imposed by placing the planet on a sharp density gradient
initially, in which case even massive planets like Jupiter undergo Type III mi-
gration (Pepliński et al. 2008). Yet another way to introduce an asymmetry
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is through migration itself: since the planet takes with it the red region, if
the planet migrates into a disc region with a different density this will again
lead to a difference between the red and the green material and to a dynamic
corotation torque (Paardekooper 2014). This has been studied both isothermal
(Paardekooper 2014) and non-isothermal (Pierens 2015) discs.

6.4 Three dimensions

So far, we have discussed only test particles in the two-dimensional shearing
sheet. Real discs are of course three-dimensional and made of gas, but for-
tunately we can incorporate three-dimensional effects in an approximate way
while at the same time fixing the free parameter ε, thereby killing two birds
with one stone.

The idea is to view the two-dimensional governing equations as vertically
integrated versions of their three-dimensional counterparts. For example, the
continuity (or mass conservation) equation reads

∂ρ

∂t
+

∂

∂x
(ρvx) +

∂

∂y
(ρvy) +

∂

∂z
(ρvz) = 0. (68)

Integrating this equation from z = −∞ to z = ∞, assuming ρvz vanishes for
large values of |z|, we get

∂

∂t

(∫ ∞
−∞

ρdz

)
+

∂

∂x

(∫ ∞
−∞

ρvxdz

)
+

∂

∂y

(∫ ∞
−∞

ρvydz

)
= 0. (69)

Defining a vertically averaged velocity

v̄ =
1

Σ

∫ ∞
−∞

ρvdz, (70)

we get
∂Σ

∂t
+

∂

∂x
(Σv̄x) +

∂

∂y
(Σv̄y) = 0, (71)

which is just the two-dimensional continuity equation. Things do not work out
as nicely for the momentum equations, for example the x-component

∂

∂t
(ρvx) +

∂

∂x

(
ρv2
x + p

)
+

∂

∂y
(ρvxvy) +

∂

∂z
(ρvxvz) =

2Ωpρ (vy + Spx)− ρ∂Φp

∂x
, (72)

but following this idea of vertical integration suggests that in two dimensions,
we should replace the last term on the right-hand side with (for a more detailed
discussion see Müller et al. 2012),

−
∫ ∞
−∞

ρ
∂Φp

∂x
dz. (73)
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Recall from (6) that the vertical density profile is essentially a Gaussian of
width H. This means that integrating vertically is the same as applying Gaus-
sian smoothing with smoothing length H. Therefore, for consistency we must
choose ε ∼ H, and our final expression for the total torque, adding the scat-
tering torque and the horseshoe drag, becomes

Γ = γ
q2

h2
Σpr

4
pΩ

2
p, (74)

where γ is a constant of order unity, which, in the case of global cylindrical
geometry, depends on local gradients in density and temperature.

6.5 Gas pressure

While a full analysis including effects of gas pressure on the dynamics is much
more complicated than our simple test particle approach, the resulting form
of the torque is exactly that of (74). Most of the work goes into getting the
numerical constant γ correct, but three important other effects of gas pressure
must be mentioned first. First of all, in the scattering calculation, it may seem
that the sign of the torque can be altered by choosing an appropriate surface
density profile. In practice, this is not the case, since changing the density
usually leads to a change in pressure, which in turn affects the rotation profile
through (4). It turns out that any attempt to change the torque this way is
doomed to fail, since changing the density in one side of the disc to affect the
torque leads to a change in rotation profile that almost completely cancels any
effect on the torque. This is called the pressure buffer effect (Ward 1986), and
makes the scattering torque rather independent of local density gradients in
the disc.

Second, in the analysis of the horseshoe drag, we have taken the streamline
pattern as given. Readers familiar with the restricted three-body problem will
have noticed the absence of a Roche lobe and several Lagrange points. It
can be shown that the configuration in the right panel of figure 3 is to be
expected when all velocities are very subsonic (Paardekooper and Papaloizou
2009b), which essentially means that gas pressure dominates over gravity. This
assumption breaks down for massive planets.

Finally, it can be shown that the scattering encounter with the planet leaves
the test particles on eccentric orbits. The response of a gaseous disc is different:
instead of eccentric particles we get coherent density wave emission (Ogilvie
and Lubow 2002). We can therefore call the scattering torque the wave torque
in gaseous discs. The left panel of figure 5 shows the surface density after 20
orbits of a planet with q = 10−5 in a disc with constant h = 0.05. The disc
response is dominated by an inner and an outer spiral density wave. Since the
planet is moving in the positive ϕ-direction, it is clear from the picture that the
gravitational field of the outer wave is trying to slow down the planet, while
the inner wave is trying to speed it up. Therefore, the outer wave promotes
inward migration, and the inner wave outward migration.
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Fig. 5 Surface density (log10(Σ/Σ0)) for a disc with constant h = 0.05, viscosity ν = 10−5

and an embedded planet of q = 10−5 after 20 orbits of the planet (left panel) and q = 10−3

after 100 orbits (right panel).

When doing the full calculation for isothermal discs, one usually finds
negative torques and therefore inward migration (Tanaka et al. 2002), unless
the surface density increases outward (Paardekooper and Papaloizou 2009a).
When temperature fluctuations are allowed for, a much richer variety of migra-
tion behaviour can be seen, with possible outward migration (Masset and Ca-
soli 2009; Paardekooper et al. 2010). This rich behaviour is almost completely
due to the action of the horseshoe drag: while the wave torque is usually neg-
ative, promoting inward migration, the horseshoe drag can be of either sign
and often dominate over the wave torque, depending on local disc parameters,
leading to complex migration maps for low-mass planets (e.g. Bitsch et al.
2013).

6.6 Migration time scale

The torque given by (74) enters the angular momentum equation of the planet,

d

dt

(
Mpr

2
pΩp

)
= Γ. (75)

Assuming the planet stays on a circular orbit with Ωp = ΩK(rp), we find that
the radial migration speed of the planet is given by

drp

dt
=

2Γ

MprpΩp
= 2γ

q

h2

Σpr
2
p

M∗
rpΩp. (76)

Ignoring factors of order unity, this leads to a migration time scale

τm =
h2

q

M∗
r2
pΣp

Ω−1
p (77)
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For a typical protoplanetary disc this suggests migration time scales at 1 AU
of ∼ 106 years for Earth and ∼ 105 years for Neptune. Since these time scales
are shorter than the life times of protoplanetary discs, this means that Type I
migration should be an important ingredient in any planet formation theory. It
is clearly not easy to prevent planets from migrating very close to the central
star, unless planetary growth rates are as high as in the pebble accretion
scenario (see Section 5) so that they grow out of the Type I migration regime
before migrating all the way in. This only applies to planets that end up as gas
giants: the population of Super-Earths and mini-Neptunes are usually thought
to be subject to Type I migration.

6.7 Recent results

Early models of Type I migration were constructed for isothermal discs, no-
tably the semi-analytical work of Tanaka et al. (2002). It was realised quickly
that the resulting inward migration time scales as quoted above were too short
to be compatible with planets ending up at several astronomical units from
their star, which led to investigations of more complex discs in search of stop-
ping and slowing down mechanisms. The discovery of rapid planet formation
by pebble accretion has alleviated some of the concerns about rapid migration
(Section 5) for gas giant planets, but the problem of Type I migration persists
for Neptunes and Super-Earths. Here we briefly mention some of the progress
that has been made, as well as some recent results.

One of the first extensions of the isothermal model was the inclusion of
magnetic fields. This leads to additional torques on the planet (Terquem 2003;
Guilet et al. 2013), but also allows the disc to be naturally turbulent because
of the magnetorotational instability (MRI Balbus and Hawley 1991). Type I
migration in such a turbulent disc has a stochastic character, but in the end
drives planets inward on too short time scales still (Nelson and Papaloizou
2004).

Most recent progress has come from releasing the isothermal assumption,
and take care of the energy budget in a more realistic way. Paardekooper
and Mellema (2006) found outward migration in three-dimensional, radiation-
hydrodynamical simulations; an effect that was later found to be due to a
radial entropy gradient in the disc (Baruteau and Masset 2008; Paardekooper
and Papaloizou 2008).

Recently, several groups have reported interesting effects on Type I migra-
tion originating very close to the planet itself. Fung et al. (2015) found that in
three-dimensional, isothermal simulations, for low values of the viscosity there
exists what they call a transient horseshoe flow, much like the green region in
the right panel of figure 4, but three-dimensional in nature and for a static (i.e.
non-migrating) planet. Material on these orbits goes very close to the planet
(well within its Bondi sphere) and appears to slow down migration by a fac-
tor of 3. For three-dimensional non-isothermal simulations, Lega et al. (2014)
found that very close to the planet, again well within the Bondi sphere, an
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asymmetry in cooling leads to an additional torque. Finally, Beńıtez-Llambay
et al. (2015) reported that heating due to planetesimal accretion can change
the sign of the torque on rapidly accreting low-mass planets.

These recent results indicate that the region very close to the planet and
what happens there thermally is extremely important. Future numerical mod-
els can hopefully zoom in on the planet sufficiently with all necessary physics
included (radiative cooling, self-gravity, magnetic fields) so that an ever more
realistic picture of Type I migration can emerge.

7 High mass planet migration (Type II)

7.1 Gap formation

As mentioned in section 6.5, gas pressure does not fundamentally alter the
physics of Type I migration, and therefore we could get reasonable estimates
of the migration rates through a ballistic approach. Moreover, there is the
assumption that the interaction with the planet does not significantly change
the properties of the disc. This works well if velocity perturbations are small
compared to the sound speed. Otherwise, we expect shock waves that will
make order unity changes to the region around the planet.

Setting ∆vx < cs in (53), together with ε = H as argued in Section 6.4, in
order for Type I migration to be valid leads to a condition on the mass

q <
3

2
h3, (78)

sometimes called the thermal criterion for gap-opening (e.g. Bryden et al.
1999). For the canonical value of h = 0.05 the boundary lies at 60 Earth
masses. This means that roughly any planet up to the mass of Neptune is safely
in the Type I regime. Note that the thermal criterion is roughly equivalent to
demanding that the Hill radius of the planet is smaller than the scale height
of the disc.

In the shearing sheet, the quantity playing the role of angular momentum
is

py = vy + 2Ωx. (79)

Note that in the unperturbed disc, this quantity changes sign at x = 0. Since
∆vy changes sign as well (see (56)), this means that particles with initially
py > 0 will experience an increase in py, while particles with initially py < 0
will experience a decrease in py. If these particles, by some damping process,
return to equilibrium orbits with their new py, we have that particles with
initial x > 0 will move to larger values of x, while particles with initial x <
0 will move to a position with x even more negative. In other words, the
gravitational pull of the planet is repulsive: it is pushing material away from
its orbit.

In the linear regime, where the waves seen in the left panel of figure 5 are of
small amplitude, the flux of angular momentum is constant, and therefore no
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surface density evolution is expected unless the waves shock far away from the
planet (Goodman and Rafikov 2001). If the waves start out as shock waves,
as is the case for q > h3, angular momentum is deposited locally leading to
dramatic evolution of the surface density. Since the planet is pushing material
away from its orbit, the result is an annular gap, as can be seen in the right
panel of figure 5, which shows a Jupiter mass planet embedded in a disc with
h = 0.05 after 100 orbits.

An estimate for the gap formation time scale can be obtained by integrating
|fy| from (57) times rp to get the the total absolute torque exerted on the disc,

|Γtot| = rp

∫ ∞
−∞
|fy|dx =

2π

9

q2

h3
Σpr

4
pΩ

2
p, (80)

where we have substituted ε = H as before. Taking the half-width of the gap
to be w, the total angular momentum of the gap region is initially

Lgap ≈ 2πrpwr
2
pΩpΣp. (81)

The time scale for removing this amount of angular momentum through the
torque |Γtot| is

τgap =
Lgap

|Γtot|
= 18

h3

q2

w

rp

1

Ωp
, (82)

which, for a gap width of 2H, gives a gap opening time scale of ∼ 100 orbits
for Jupiter in a disc with H/r = 0.05, consistent with numerical simulations.

While q > h3 is a necessary condition for local non-linear waves and there-
fore gap formation, if the disc is viscous it is also necessary to make sure
viscosity is not able to close the gap. Suppose we impose a gap of width 2H
in the disc. The total gravitational torque on one side of the disc is given by

Γg = rp

∫ ∞
H

fy(x)dx

=
−rp(GMp)2Σ

2S2
p

∫ ∞
H

dx

(x2 + ε2)
2

≈ −0.032
r4
pΩ

2
pq

2Σ

h3
. (83)

Demanding this to be larger in magnitude than the viscous torque (e.g Lin
and Papaloizou 1993)

Γν = 3πΣνr2
pΩp (84)

leads to the following condition on the viscosity in order for the planet to open
a gap,

ν < C
r2
pΩpq

2

h3
, (85)

where C = 0.0034. For a Jupiter mass planet in a disc with h = 0.05, we
must have ν < 2.7 · 10−5. Therefore, for canonical disc parameters h = 0.05
and ν = 10−5, both the thermal and viscous criteria yield similar minimum
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planetary masses for gap opening. Combining both requirements, Crida et al.
(2006) found a general criterion

3

4

H

rHill
+

50

qR
< 1 (86)

where rHill = rp (q/3)
1/3

is the radius of the Hill sphere, and R = r2
pΩp/ν

denotes the Reynolds number.

7.2 Migration inside gaps

When a planet is able to open up a gap, its interaction with the disc changes
fundamentally. Consider the very much idealised case of a planet orbiting in a
completely empty gap, and that the gap is wide enough so that the planet does
not interact with the disc when it is in the centre of the gap (note that the
planet does need to be able to interact with the gap region itself, otherwise
there would be no gap in the first place). Now displace the planet inward
by a small amount dr. It can now interact with an annulus of disc material
just inside the inner edge of the gap. This interaction, through the wave (or
scattering) torque, will push the planet outward, back to the centre of the
gap. The opposite situation arises if we displace the planet outward. In other
words, the edges of the gap repel the planet.

This means that the planet is locked inside the gap: it can not move with
respect to the gap. If we now bring in global disc evolution, where the disc as
a whole is slowly draining onto the central star, this means that the gap will
try to accrete with the rest of the disc, taking the planet with it. In effect,
the planet acts as a normal disc particle, accreting onto the central star. This
is called Type II migration (Lin and Papaloizou 1986; Ward 1997), and it
necessarily occurs on the viscous time scale.

Several modifications have to be made to this simple picture. First of all,
consider again a planet in a gap but displaced inward by a small amount dr.
The annulus it interacts with at radial location rin has total angular momen-
tum

dL = Σr2
inΩin2πrindr (87)

To take the planet back to the centre of the gap requires a change in angular
momentum of the planet of

dL =
1

2
MprpΩpdr. (88)

Therefore, the annulus only has enough angular momentum to push the planet
back if

Mp < 4πΣr2
p. (89)

In other words, only if the local disc mass is larger than the planet mass does
the planet behave like a disc particle, otherwise it can move with respect to
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the gap. This is why very massive planets migrate on time scales larger than
the viscous time scale (Syer and Clarke 1995; Ivanov et al. 1999).

A second important modification concerns the implicit assumption in the
simple picture of Type II migration that no material can cross the gap. Suppose
for example that the annulus interacting with the inward-displaced planet as
described above is not ’scattered’ away by the planet, but instead is transferred
outward in a single horseshoe turn, much like in the case of dynamic corotation
torques. The back reaction on the planet now takes it even further inward
towards the inner edge of the gap. In this case, therefore, the gap edges attract
the planet rather than repel it. In reality, a combination of these two extremes
probably occurs, which means that gap-opening planets do in general not
migrate on the viscous time scale (Edgar 2007; Duffell et al. 2014; Dürmann
and Kley 2015).

7.3 Accretion inside gaps

Since mass flows continuously through the gaps opened by massive planets, gap
formation does not spell the end of gas accretion onto the planet. In fact, the
mass flow to the planet is hardly diminished by the presence of a gap (Bryden
et al. 1999; Kley 1999; Lubow et al. 1999; Lubow and D’Angelo 2006). This
raises the question of what determines the final mass of a giant planet. In fact,
even if a gap really meant a stop to accretion, the existence of Saturn-mass
planets would still be a problem. Clearly, if the planet would be able to accept
a large amount of the mass available through the flow across the gap, it would
always end up far more massive than Jupiter, unless the disc disappears at
exactly the right time. This seems inconsistent with the mass distribution of
exoplanets, with ubiquitous Jupiter- and Saturn-mass planets.

Therefore, a mechanism is needed to limit the accretion onto a gap-opening
planet. It may be that zooming in onto the planet (e.g. D’Angelo et al. 2003)
with all the necessary physics included (radiation, self-gravity, realistic equa-
tion of state, magnetic fields) will reveal plausible mechanisms for stopping
accretion at various points in the life of the planet. Another possibility is that
accretion is regulated by the circumplanetary disc that forms around high-mass
planets (Ayliffe and Bate 2009b,a; Ward and Canup 2010). These subdiscs are
discussed in detail elsewhere in this volume; here we just mention that recent
simulations show that the circumplanetary disc may indeed be a bottleneck
(Rivier et al. 2012; Szulágyi et al. 2014).

7.4 Migration of planets formed by disc instability

Now we finally return to the disc instability scenario outlined in section 3.1,
where giant planets were formed directly from a gravitationally unstable disc.
Since these planets have gap-opening masses, one might expect that the ap-
propriate migration mechanism is Type II. However, an implicit assumption
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in the derivation of Type II migration is that the gap formation time scale
is smaller than other important time scales such as the migration time scale
and gas accretion time scale. With the gap formation time scale ∼ 100 orbits,
this is always the case in the core accretion scenario, and as a result a growing
planet always has the gap consistent with its current mass and migrates at a
rate that does not depend on its history (an exception is Type III migration).

In the disc instability model, planets form on a dynamical time scale.
Therefore, the formation time scale is much shorter than the gap opening
time scale and we have a situation of a giant planet fully embedded in a mas-
sive disc. Next, we have to compare the migration time scale across the with
of the gap τm,w to the gap formation time scale τgap. If τgap < τm,w, a gap will
form and the planet will enter the Type II migration regime. For this to be
the case we need

τgap = 18
h3

q2

w

rp

1

Ωp
<
h2

q

w

rp

M∗
r2
pΣp

1

Ωp
= τm,w (90)

Rearranging we get a condition on q,

q > 18h
r2
pΣp

M∗
=

18

h

ΣpH
2

M∗
. (91)

Therefore, we need the mass of the fragment to be at least 18/h times bigger
than expected from (30). Therefore, rather surprisingly, planets formed by disc
instability migrate in the fast Type I regime (Baruteau et al. 2011). Migration
time scales can indeed be very short. Using the Q parameter instead of the
surface density, we get that

τm =
h

q
πQ

1

Ωp
(92)

Substituting q = h3 from (31) and h = 0.1 as the aspect ratio in the outer parts
of the disc, we expect migration time scales to be in the tens of orbits. Such
fast migration is indeed observed in simulations in the context of accretion
outburst (Vorobyov and Basu 2006, 2010b; Machida et al. 2011) and giant
planet formation (Vorobyov and Basu 2010a; Baruteau et al. 2011). This means
that the disc instability model suffers from similar migration perils as the core
accretion model; in particular, it is difficult to see how to keep fragments at
large radii where planets are observed (Marois et al. 2008).

8 Gas accretion and growth maps

Growing protoplanets acquire gaseous envelopes that are in both hydrostas-
tic and thermal balance. At the early growth stages of the core the gaseous
envelope grows together with the core, but does not experience independent
accretion. Mizuno (1980) showed that the thermal equilibrium breaks down
approximately when the envelope grows more massive than the core, which
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occurs for nominal conditions in the protoplanetary disc at around 10 Earth
masses. This breakdown is followed by a run-away contraction of the gaseous
envelope as the energy released by accretion can not replace the energy lost
by cooling to the surroundings.

Mizuno (1980) considered core growth rates relevant for planetesimal ac-
cretion. However, for pebble accretion the core can grow several orders of
magnitude faster. This implies that the critical core mass of run-away con-
traction is several hundred Earth masses (Lambrechts et al. 2014). However,
Lambrechts et al. (2014) also demonstrated that the flow of pebbles on to the
core is stopped at a mass of around 10 Earth masses, as such a massive proto-
planet carves a partial gap in the protoplanetary disc and pebbles are trapped
at the outer edge of the gas where the gas orbits at the Keplerian speed. The
termination of heating by the infalling pebbles allows the envelope to contract.
Initially, the contraction is slow as the gravity is dominated by the mass of the
solids core. Piso and Youdin (2014) considered the contraction of an envelope
that is only supported by the heat of the adiabatic contraction. This yields an
envelope growth rate of (Bitsch et al. 2015)

dMg

dt
= 0.00175ME Myr−1 f−2

(
κ

cm2 g−1

)−1(
ρ•

5.5 g cm−3

)−1/6(
Mc

ME

)11/3

×
(
Menv

0.1ME

)−1(
T

81 K

)−0.5

. (93)

Here κ is the opacity of the envelope material. Contraction continues until the
envelope mass Me is equal to the core mass Mc. After that the self-gravity
of the envelope leads to accretion of gas from the disc. Machida et al. (2010)
calculated the accretion rate of planets using hydrodynamical simulations with
nested grids. They find that the accretion rate follows the minimum of the two
functions

dMg

dt
= 0.83ΩΣgH

2

(
RH

H

)9/2

, (94)

dMg

dt
= 0.14ΩΣgH

2 . (95)

Gas accretion is an area of active research. Recent findings indicate that
low-mass planets do not possess bound envelopes at all, but rather experience
a recycling of gas through the envelope that is more rapid than the contraction
(Ormel et al. 2015). This may help explain how some super-Earths do not un-
dergo rapid run-away accretion of gas. Nevertheless, the existing prescriptions
for pebble accretion, gas accretion and planetary migration allow us to con-
struct growth maps of planetary populations. Two examples of such maps are
shown in figure 6, a plot taken from Bitsch and Johansen (2016). The maps
show the final planetary mass and semi-major axis as a function of the starting
location and starting time of the protoplanet. Figure 6 demonstrates that all
the major classes of planets can form by a combination of pebble accretion
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Fig. 6 Growth maps of planets that form by pebble accretion and undergo Type I and Type
II, from Bitsch and Johansen (2016). The plot shows the planetary mass (colored contours)
and final semi-major axis (black contour lines) as a function of the starting position r0 and
the starting time t0. The top plot has only gas giants inside of 0.5 AU – this is due to the
outwards migration zone that prevents low mass cores from migrating interior of the ice line.
The bottom plot shows the result of lowering the water contents of the disc (w:s denotes the
water-to-silicates ratio). The lowered water abundance leads to a less pronounced outwards
migration zone and hence transport of icy super-Earths to warm and hot orbits close to the
star.

and planetary migration, including hot, warm and cold gas giants (red and yel-
low contours), super-Earths and ice giants (green contours) and low-mass ice
planets (blue contours). Migration of planets is not a nuisance in this picture,
but rather a necessary (and elegant) ingredient in defining the final orbits of
the planets. The price for the high migration rates is nevertheless that planets
must form much further out than their final position.
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9 Interaction with water

There are several interesting links between the story of giant planet formation
and migration as told above and the delivery of water to planets. First of all
for the giant planets themselves: in the simplest picture, their water content
is the sum of the water content of their building blocks. Therefore, we need to
know at what stage in their evolution the planet gets most of its mass (and in
what form, solid or gaseous), and exactly where it is in the disc at the time.
Measuring carbon-to-oxygen and carbon-to-hydrogen ratios may provide im-
portant insights into the formation history of a planet (Öberg et al. 2011). One
simple example could be trying to constrain planet migration by looking at
its water content. When confronted by a planet rich in water, but located too
close to the central star for water to have accreted locally, it seems likely that
inward migration has taken place. In principle, all migration could have hap-
pened while the building blocks were still small: inward drift of dust particles
may lead to enough transport of solids to build the planet locally. However, it
is unlikely that these small particles can keep their water for long enough in a
water-hostile region in order to build a water-rich planet. It seems more likely
that migration has taken place while the object was already of planetary-size.

However, it must be noted that this reverse engineering of the process of
planet formation can be hopelessly degenerate. Madhusudhan et al. (2014)
suggests a possible way to distinguish planet migration through the proto-
planetary disc from migration processes after the disc has gone (e.g. Rasio
and Ford 1996) might be to look at the metallicity of the atmospheres of ex-
trasolar giant planets, since migration through the disc would lead to accretion
of more solids. However, it is easy to come up with a scenario where disc mi-
gration would lead to no accretion of solids at all: since solids react strongly to
any pressure gradient (see section 4), when a planet starts to open up a gap, it
very effectively pushes solids away from its orbit, much more efficiently than
the gas (e.g. Paardekooper and Mellema 2004). Nevertheless, it can be hoped
that these kind of observations can at least point towards more likely scenarios
so that the story of giant planet formation can be updated and refined.

There is also a strong connection that works the other way: local abundance
of water can have strong effects on the migration processes, in particular Type
I migration. Because of its effect on the local temperature gradient, the water
ice line is usually a region of outward Type I migration (Kretke and Lin 2007;
Bitsch et al. 2014). Moreover, the overall water abundance in the disc influences
the regions of outward Type I migration and therefore the final orbital distance
of for example super Earths (Bitsch and Johansen 2016), as discussed in the
previous section.

Finally, it is important to realise that since giant planets make up most
of the mass and usually angular momentum in planetary systems, they can
profoundly influence the evolution of and water delivery to other planets in the
system. Any formation scenario of terrestrial or Super-Earth planets including
their water content needs to include the position of any giants in the system,
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and therefore the migration history of these giant planets (e.g. Walsh et al.
2011; O’Brien et al. 2014).

10 Concluding remarks

The aim of this review was to give an overview of the basic formation and
migration mechanisms for giant planets. During all stages of giant planet for-
mation, some form of migration seems to be inevitable: small solid particles
undergo radial drift, low-mass planets and cores of giant planets undergo Type
I migration, and giant planets undergo Type II migration. These migration
types affect all stages of planet formation. Hence an increased understanding
of migration will be crucial for gaining insight into the formation of the planets
in the Solar System and in the multitudes of observed exoplanetary systems.
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