108 research outputs found

    CC9 Livestock-Associated Staphylococcus aureus Emerges in Bloodstream Infections in French Patients Unconnected With Animal Farming

    Get PDF
    We report 4 bloodstream infections associated with CC9 agr type II Staphylococcus aureus in individuals without animal exposure. We demonstrate, by microarray analysis, the presence of egc cluster, fnbA, cap operon, lukS, set2, set12, splE, splD, sak, epiD, and can, genomic features associated with a high virulence potential in human

    Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3

    Get PDF
    We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)κ with κ=2.9-1.8+1.7 for z≲1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9M⊙. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum

    Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

    Get PDF
    Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.

    Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 LIGO data

    Get PDF
    International audienceWe present a search for gravitational waves from 222 pulsars with rotation frequencies ≳10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015–2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsar’s rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars’ spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711−6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the star’s moment of inertia, and imply a gravitational-wave-derived upper limit on the star’s ellipticity of 1.2 × 10−8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars

    All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    Get PDF
    After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1  s and “long” ≳1  s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo’s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2–500 s in duration and a frequency band of 24–2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure

    Diving below the spin-down limit:constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

    Get PDF
    We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3 x 10⁻⁵, which is the third best constraint for any young pulsar

    The Advanced Virgo+ status

    Get PDF
    The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies. The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects). This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking

    Advanced Virgo Plus: Future Perspectives

    Get PDF
    While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli

    Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

    Get PDF
    Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer’s dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1  dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%–8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded
    corecore