166 research outputs found

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG

    Get PDF
    Respiratory viral infections contribute substantially to global infant losses and disproportionately affect preterm neonates. Using our previously established neonatal murine model of influenza infection, we demonstrate that three-day old mice are exceptionally sensitive to influenza virus infection and exhibit high mortality and viral load. Intranasal pre- and post-treatment of neonatal mice with Lactobacillus rhamnosus GG (LGG), an immune modulator in respiratory viral infection of adult mice and human preterm neonates, considerably improves neonatal mice survival after influenza virus infection. We determine that both live and heat-killed intranasal LGG are equally efficacious in protection of neonates. Early in influenza infection, neonatal transcriptional responses in the lung are delayed compared to adults. These responses increase by 24 hours post-infection, demonstrating a delay in the kinetics of the neonatal anti-viral response. LGG pretreatment improves immune gene transcriptional responses during early infection and specifically upregulates type I IFN pathways. This is critical for protection, as neonatal mice intranasally pre-treated with IFNβ before influenza virus infection are also protected. Using transgenic mice, we demonstrate that the protective effect of LGG is mediated through a MyD88-dependent mechanism, specifically via TLR4. LGG can improve both early control of virus and transcriptional responsiveness and could serve as a simple and safe intervention to protect neonates

    TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes

    Get PDF
    PURPOSE Olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi), is approved for the treatment of human epidermal growth factor receptor 2 (HER2)–negative metastatic breast cancer (MBC) in germline (g)BRCA1/2 mutation carriers. Olaparib Expanded, an investigator-initiated, phase II study, assessed olaparib response in patients with MBC with somatic (s)BRCA1/2 mutations or g/s mutations in homologous recombination (HR)–related genes other than BRCA1/2. METHODS Eligible patients had MBC with measurable disease and germline mutations in non-BRCA1/2 HR-related genes (cohort 1) or somatic mutations in these genes or BRCA1/2 (cohort 2). Prior PARPi, platinum-refractory disease, or progression on more than two chemotherapy regimens (metastatic setting) was not allowed. Patients received olaparib 300 mg orally twice a day until progression. A single-arm, two-stage design was used. The primary endpoint was objective response rate (ORR); the null hypothesis (# 5% ORR) would be rejected within each cohort if there were four or more responses in 27 patients. Secondary endpoints included clinical benefit rate and progression-free survival (PFS). RESULTS Fifty-four patients enrolled. Seventy-six percent had estrogen receptor–positive HER2-negative disease. Eighty-seven percent had mutations in PALB2, sBRCA1/2, ATM, or CHEK2. In cohort 1, ORR was 33% (90% CI, 19% to 51%) and in cohort 2, 31% (90% CI, 15% to 49%). Confirmed responses were seen only with gPALB2 (ORR, 82%) and sBRCA1/2 (ORR, 50%) mutations. Median PFS was 13.3 months (90% CI, 12 months to not available/computable [NA]) for gPALB2 and 6.3 months (90% CI, 4.4 months to NA) for sBRCA1/ 2 mutation carriers. No responses were observed with ATM or CHEK2 mutations alone. CONCLUSION PARP inhibition is an effective treatment for patients with MBC and gPALB2 or sBRCA1/2 mutations, significantly expanding the population of patients with breast cancer likely to benefit from PARPi beyond gBRCA1/2 mutation carriers. These results emphasize the value of molecular characterization for treatment decisions in MBC
    corecore