76 research outputs found

    Microscopic Structure of High-Spin Vibrational Excitations in Superdeformed 190,192,194Hg

    Get PDF
    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed bands in 190Hg, 192Hg, and 194Hg. The K=2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. At finite frequency, however, the interplay between rotation and vibrations produces different effects depending on neutron number: The lowest octupole phonon is rotationally aligned in 190Hg, is crossed by the aligned two-quasiparticle bands in 192Hg, and retains the K=2 octupole vibrational character up to the highest frequency in 194Hg. The gamma vibrations are predicted to be higher in energy and less collective than the octupole vibrations. From a comparison with the experimental dynamic moments of inertia, a new interpretation of the observed excited bands invoking the K=2 octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in SD Hg nuclei.Comment: 22 pages, REVTeX, 12 postscript figures are available on reques

    Excited superdeformed bands in 191Hg

    Get PDF
    Two weakly populated rotational bands have been observed in 191Hg with properties (energy spacings, moments of inertia and lifetimes) very similar to those of the previously reported superdeformed band. Based on cranked Woods-Saxon calculations, these structures are interpreted as the first excited bands in the superdeformed minimum of 191Hg. Comparisons between the data and the calculations highlight the role of specific orbitals at large deformations

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jÀsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Genome-wide by Environment Interaction Studies of Depressive Symptoms and Psychosocial Stress in UK Biobank and Generation Scotland

    Get PDF
    Stress is associated with poorer physical and mental health. To improve our understanding of this link, we performed genome-wide association studies (GWAS) of depressive symptoms and genome-wide by environment interaction studies (GWEIS) of depressive symptoms and stressful life events (SLE) in two UK population-based cohorts (Generation Scotland and UK Biobank). No SNP was individually significant in either GWAS, but gene-based tests identified six genes associated with depressive symptoms in UK Biobank (DCC, ACSS3, DRD2, STAG1, FOXP2 and KYNU; p < 2.77 x 10(-6)). Two SNPs with genome-wide significant GxE effects were identified by GWEIS in Generation Scotland: rs12789145 (53-kb downstream PIWIL4; p = 4.95 x 10(-9); total SLE) and rs17070072 (intronic to ZCCHC2; p = 1.46 x 10(-8); dependent SLE). A third locus upstream CYLC2 (rs12000047 and rs12005200, p < 2.00 x 10(-8); dependent SLE) when the joint effect of the SNP main and GxE effects was considered. GWEIS gene-based tests identified: MTNR1B with GxE effect with dependent SLE in Generation Scotland; and PHF2 with the joint effect in UK Biobank (p < 2.77 x 10(-6)). Polygenic risk scores (PRSs) analyses incorporating GxE effects improved the prediction of depressive symptom scores, when using weights derived from either the UK Biobank GWAS of depressive symptoms (p = 0.01) or the PGC GWAS of major depressive disorder (p = 5.91 x 10(-3)). Using an independent sample, PRS derived using GWEIS GxE effects provided evidence of shared aetiologies between depressive symptoms and schizotypal personality, heart disease and COPD. Further such studies are required and may result in improved treatments for depression and other stress-related conditions

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link
    • 

    corecore