82 research outputs found
Radio-Infrared Correlation for Local Dusty Galaxies and Dusty AGNs from the AKARI All Sky Survey
We use the new release of the AKARI Far-Infrared all sky Survey matched with
the NVSS radio database to investigate the local () far infrared-radio
correlation (FIRC) of different types of extragalactic sources. To obtain the
redshift information for the AKARI FIS sources we crossmatch the catalogue with
the SDSS DR8. This also allows us to use emission line properties to divide
sources into four categories: i) star-forming galaxies (SFGs), ii) composite
galaxies (displaying both star-formation and active nucleus components), iii)
Seyfert galaxies, and iv) low-ionization nuclear emission-line region (LINER)
galaxies.
We find that the Seyfert galaxies have the lowest FIR/radio flux ratios and
display excess radio emission when compared to the SFGs. We conclude that FIRC
can be used to separate SFGs and AGNs only for the most radio-loud objects.Comment: 9 pages, accepted to PAS
The ESCAPE project : Energy-efficient Scalable Algorithms for Weather Prediction at Exascale
In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure.
The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors.
This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche a l'Operationnel a Meso-Echelle) and ALADIN (Aire Limitee Adaptation Dynamique Developpement International); and COSMO-EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf.
The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU-GPU arrangements
Classical conformal blocks from TBA for the elliptic Calogero-Moser system
The so-called Poghossian identities connecting the toric and spherical
blocks, the AGT relation on the torus and the Nekrasov-Shatashvili formula for
the elliptic Calogero-Moser Yang's (eCMY) functional are used to derive certain
expressions for the classical 4-point block on the sphere. The main motivation
for this line of research is the longstanding open problem of uniformization of
the 4-punctured Riemann sphere, where the 4-point classical block plays a
crucial role. It is found that the obtained representation for certain 4-point
classical blocks implies the relation between the accessory parameter of the
Fuchsian uniformization of the 4-punctured sphere and the eCMY functional.
Additionally, a relation between the 4-point classical block and the ,
twisted superpotential is found and further used to re-derive the
instanton sector of the Seiberg-Witten prepotential of the , supersymmetric gauge theory from the classical block.Comment: 25 pages, no figures, latex+JHEP3, published versio
Nomenclatural issues concerning cultured yeasts and other fungi: why it is important to avoid unneeded name changes
The unambiguous application of fungal names is important to communicate scientific findings. Names are critical for (clinical) diagnostics, legal compliance, and regulatory controls, such as biosafety, food security, quarantine regulations, and industrial applications. Consequently, the stability of the taxonomic system and the traceability of nomenclatural changes is crucial for a broad range of users and taxonomists. The unambiguous application of names is assured by the preservation of nomenclatural history and the physical organisms representing a name. Fungi are extremely diverse in terms of ecology, lifestyle, and methods of study. Predominantly unicellular fungi known as yeasts are usually investigated as living cultures. Methods to characterize yeasts include physiological (growth) tests and experiments to induce a sexual morph; both methods require viable cultures. Thus, the preservation and availability of viable reference cultures are important, and cultures representing reference material are cited in species descriptions. Historical surveys revealed drawbacks and inconsistencies between past practices and modern requirements as stated in the International Code of Nomenclature for Algae, Fungi, and Plants (ICNafp). Improper typification of yeasts is a common problem, resulting in a large number invalid yeast species names. With this opinion letter, we address the problem that culturable microorganisms, notably some fungi and algae, require specific provisions under the ICNafp. We use yeasts as a prominent example of fungi known from cultures. But viable type material is important not only for yeasts, but also for other cultivable Fungi that are characterized by particular morphological structures (a specific type of spores), growth properties, and secondary metabolites. We summarize potential proposals which, in our opinion, will improve the stability of fungal names, in particular by protecting those names for which the reference material can be traced back to the original isolate
Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names
Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and nonpleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data
The ESCAPE project: Energy-efficient Scalable Algorithms for Weather Prediction at Exascale
Abstract. In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche à l'Opérationnel à Meso-Echelle) and ALADIN (Aire Limitée Adaptation Dynamique Développement International); and COSMO–EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU–GPU arrangements
Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts
Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized
Ευρετικές προσεγγίσεις του μοναδιάστατου προβλήματος πακετοποίησης
Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data
Fungal Planet description sheets: 1478-1549
Novel species of fungi described in this study include those from various countries as follows: Australia, Aschersonia mackerrasiae on whitefly, Cladosporium corticola on bark of Melaleuca quinquenervia, Penicillium nudgee from soil under Melaleuca quinquenervia, Pseudocercospora blackwoodiae on leaf spot of Persoonia falcata, and Pseudocercospora dalyelliae on leaf spot of Senna alata. Bolivia, Aspicilia lutzoniana on fully submersed siliceous schist in high-mountain streams, and Niesslia parviseta on the lower part and apothecial discs of Erioderma barbellatum onatwig. Brazil, Cyathus bonsai on decaying wood, Geastrum albofibrosum from moist soil with leaf litter, Laetiporus pratigiensis on a trunk of a living unknown hardwood tree species, and Scytalidium synnematicum on dead twigs of unidentified plant. Bulgaria, Amanita abscondita on sandy soil in a plantation of Quercus suber. Canada, Penicillium acericola on dead bark of Acer saccharum, and Penicillium corticola on dead bark of Acer saccharum. China, Colletotrichum qingyuanense on fruit lesion of Capsicum annuum. Denmark, Helminthosphaeria leptospora on corticioid Neohypochnicium cremicolor. Ecuador (Galapagos), Phaeosphaeria scalesiae on Scalesia sp. Finland, Inocybe jacobssonii on calcareouss oils in dry forests and park habitats. France, Cortinarius rufomyrrheus on sandy soil under Pinus pinaster, and Periconia neominutissima on leaves of Poaceae. India, Coprinopsis fragilis on decaying bark of logs, Filoboletus keralensis on unidentified woody substrate, Penicillium sankaranii from soil, Physisporinus tamilnaduensis on the trunk of Azadirachta indica, and Poronia nagaraholensis on elephant dung. Iran, Neosetophoma fic on infected leaves of Ficus elastica. Israel, Cnidariophoma eilatica (incl. Cnidariophoma gen. nov.) from Stylophora pistillata. Italy, Lyophyllum obscurum on acidic soil. Namibia, Aureobasidium faidherbiae on dead leaf of Faidherbia albida, and Aureobasidium welwitschiae on dead leaves of Welwitschia mirabilis. Netherlands, Gaeumannomycella caricigena on dead culms of Carex elongata, Houtenomyces caricicola (incl. Houtenomyces gen. nov.) on culms of Carex disticha, Neodacampia ulmea (incl. Neodacampia gen. nov.) on branch of Ulmus laevis, Niesslia phragmiticola on dead standing culms of Phragmites australis, Pseudopyricularia caricicola on culms of Carex disticha, and Rhodoveronaea nieuwwulvenica on dead bamboo sticks. Norway, Arrhenia similis half-buried and moss-covered pieces of rotting wood in grass-grownpath. Pakistan, Mallocybe ahmadii on soil. Poland, Beskidomyces laricis (incl. Beskidomyces gen. nov.) from resin of Larix decidua ssp. polonica, Lapidomyces epipinicola from sooty mould community on Pinus nigra, and Leptographium granulatum from a gallery of Dendroctonus micans on Picea abies. Portugal, Geoglossum azoricum on mossy areas of laurel forest areas planted with Cryptomeria japonica, and Lunasporangiospora lusitanica from a biofilm covering a bio deteriorated limestone wall. Qatar, Alternaria halotolerans from hypersaline sea water, and Alternaria qatarensis from water sample collected from hypersaline lagoon. South Africa, Alfaria thamnochorti on culm of Thamnochortus fraternus, Knufia aloeicola on Aloe gariepensis, Muriseptatomyces restionacearum (incl.Muriseptatomyces gen. nov.) on culms of Restionaceae, Neocladosporium arctotis on nest of cases of bagworm moths(Lepidoptera, Psychidae) on Arctotis auriculata, Neodevriesia scadoxi on leaves of Scadoxus puniceus, Paraloratospora schoenoplecti on stems of Schoenoplectus lacustris, Tulasnella epidendrea from the roots of Epidendrum × obrienianum, and Xenoidriella cinnamomi (incl. Xenoidriella gen. nov.) on leaf of Cinnamomum camphora. South Korea, Lemonniera fraxinea on decaying leaves of Fraxinus sp. frompond. Spain, Atheniella lauri on the bark of fallen trees of Laurus nobilis, Halocryptovalsa endophytica from surface-sterilised, asymptomatic roots of Salicornia patula, Inocybe amygdaliolens on soil in mixed forest, Inocybe pityusarum on calcareous soil in mixed forest, Inocybe roseobulbipes on acidic soils, Neonectria borealis from roots of Vitis berlandieri × Vitis rupestris, Sympoventuria eucalyptorum on leaves of Eucalyptus sp., and Tuber conchae fromsoil. Sweden, Inocybe bidumensis on calcareous soil. Thailand, Cordyceps sandindaengensis on Lepidoptera pupa, buried in soil, Ophiocordyceps kuchinaraiensis on Coleoptera larva, buried in soil, and Samsoniella winandae on Lepidoptera pupa, buriedinsoil. Taiwan region (China), Neophaeosphaeria livistonae on dead leaf of Livistona rotundifolia. Türkiye, Melanogaster anatolicus on clay loamy soils. UK, Basingstokeomyces allii (incl. Basingstokeomyces gen. nov.) on leaves of Allium schoenoprasum. Ukraine, Xenosphaeropsis corni on recently dead stem of Cornus alba. USA, Nothotrichosporon aquaticum (incl. Nothotrichosporon gen. nov.) from water, and Periconia philadelphiana from swab of coil surface. Morphological and culture characteristics for these new taxa are supported by DNA barcodes.The work of P.W. Crous and colleagues benefitted
from funding by the European Union’s Horizon 2020 research and innovation
program (RISE) under the Marie Skłodowska-Curie grant agreement No.
101008129, project acronym ‘Mycobiomics’, and the Dutch NWO Roadmap
grant agreement No. 2020/ENW/00901156, project ‘Netherlands Infrastructure for Ecosystem and Biodiversity Analysis – Authoritative and Rapid
Identification System for Essential biodiversity information’(acronym NIEBAARISE). G. Gulden, B. Rian and I. Saar thank K. Bendiksen at the fungarium
and G. Marthinsen at NorBol, both Natural History Museum, University of
Oslo for valuable help with the collections, and the sequencing of our finds
of A. similis from 2022. Sincere thanks to A. Voitk for assistance with the
colour plate and review of the manuscript. I. Saar was supported by the
Estonian Research Council (grant PRG1170). P. Rodriguez-Flakus and
co-authors are greatly indebted to their colleagues and all staff of the Herbario
Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de SanAndrés,
La Paz, for their generous long-term cooperation. Their research was financially supported by the National Science Centre (NCN) in Poland (grants
numbers 2018/02/X/NZ8/02362 and 2021/43/B/NZ8/02902). Y.P. Tan and
colleagues thank M.K. Schutze (Department of Agriculture and Fisheries,
Queensland, Australia) for determining the identity of the insect hosts for
Aschersonia mackerrasiae. The Australian Biological Resources Study
funded the project that led to the discovery of Aschersonia mackerrasiae.
K.G.G. Ganga acknowledges support from the University Grants Commission
(UGC), India, in the form of a UGC research fellowship (Ref No. 20/12/2015(ii)
EU-V), and the authorities of the University of Calicut for providing facilities
to conduct this study. S. Mahadevakumar acknowledges the Director, KSCSTE - Kerala Forest Research Institute and Head of Office, Botanical Survey
of India,Andaman and Nicobar Regional Centre, Port Blair for the necessary
support and M. Madappa, Department of Studies in Botany, University of
Mysore for technical assistance. A.R. Podile thanks the Department of
Science and Technology, Govt. of India for the JC Bose Fellowship (Grant
No. JCB/2017/000053) & MoE and IOE-Directorate-UOH for project (Grant
No.UOH-IOE-RC3-21-065). Financial support was provided to R. de L. Oliveira and K.D. Barbosa by the Coordenação deAperfeiçoamento de Pessoal
de Nível Superior - Brazil (CAPES) – Finance code 001, and to I.G. Baseia
and M.P. Martín by the National Council for Scientific and Technological
Development (CNPq) under CNPq-Universal 2016 (409960/2016-0) and
CNPq-visiting researcher (407474/2013-7). E. Larsson acknowledges the
Swedish Taxonomy Initiative, SLU Artdatabanken, Uppsala, Sweden. H.Y.
Mun and J. Goh were supported by a grant from the Nakdonggang National Institute of Biological Resources (NNIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NNIBR202301106). J. Trovão
and colleagues were financed by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operational Programme
for Competitiveness and Internationalisation (POCI), and by Portuguese
funds through FCT- Fundação para a Ciência e a Tecnologia in the framework
of the project POCI-01-0145-FEDER-PTDC/EPH-PAT/3345/ 2014. Their
research was carried out at the R & D Unit Centre for Functional Ecology
– Science for People and the Planet (CFE), with reference UIDB/04004/2020,
financed by FCT/MCTES through national funds (PIDDAC). João Trovão
was supported by POCH - Programa Operacional Capital Humano (co-funding by the European Social Fund and national funding by MCTES), through
a ‘FCT- Fundação para a Ciência e Tecnologia’ PhD research grant (SFRH/
BD/132523/2017). O. Kaygusuz and colleagues thank the Research Fund
of the Isparta University ofApplied Sciences for their financial support under
the project number 2021-ILK1-0155. They also thank N. Sánchez Biezma
of the Department of Drawing and Scientific Photography at the Alcalá
University for his help in the digital preparation of the photographs. The research of M. Spetik and co-authors was supported by project No. IGAZF/2021-SI1003. V. Darmostuk and colleagues acknowledge our colleagues
and all staff of the Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, for their generous long-term cooperation. They would also like to thank the SERNAP (http://sernap.gob.bo),
and all protected areas staff, for providing permits for scientific studies, as
well as their assistance and logistical support during the field works. This
research was financially supported by the National Science Centre (NCN)
in Poland (grant number DEC-2013/11/D/NZ8/ 03274). M. Kaliyaperumal
and co-authors thank the Centre of Advanced Studies in Botany, University
of Madras for the laboratory facilities. M. Kaliyaperumal thanks the Extramural Research-SERB, DST (EMR/2016/003078), Government of India, for
financial assistance. M. Kaliyaperumal and K. Kezo thanks RUSA 2.0
(Theme-1, Group-1/2021/49) for providing a grant. M. Shivannegowda and
colleagues thank C.R. Santhosh, Department of Studies in Microbiology,
University of Mysore, Manasagangotri, Mysuru for technical support. They
also thank K.R. Sridhar, Mangalore University, Karnataka, India and S.S.N.
Maharachchikumbura, University of Electronic Science and Technology of
China, Chengdu for their support and helping with technical inputs. The study
of G.G. Barreto and co-authors was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES - Finance
Code 001), and the Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq - Proc. 131503/2019-7; Proc. 312984/2018-9); the authors also thank to Programa de Pós-Graduação em Botânica – PPGBOT.
L.F.P. Gusmão thanks to Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq) for a research grant. T. Nkomo and colleagues thank
the National Research Foundation of SouthAfrica for funding this study, with
additional funding from the Forestry and Agricultural Biotechnology Institute
and the University of Pretoria. G. Delgado is grateful to W. Colbert and
S. Ward (Eurofins Built Environment) for continual encouragement and
provision of laboratory facilities. J.G. Maciá-Vicente acknowledges support
from the Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer
Exzellenz (LOEWE) of the state of Hesse within the framework of the Cluster for Integrative Fungal Research (IPF) of Goethe University Frankfurt.
F. Esteve-Raventós and colleagues acknowledge P. Juste and J.C. Campos
for the loan of some collections for study and N. Subervielle and L. Hugot
(Conservatoire Botanique National de Corse, Office de l’Environnement de
la Corse, Corti) for their assistance. They also acknowledge the Balearic
Mycology Group (FCB) for their permanent help in the search for collections
in the Balearic Islands, and Y. Turégano for obtaining some of the sequences presented here, and L. Parra for his suggestions and help on nomenclatural issues. S. Mongkolsamrit and colleagues were financially supported by
the Platform Technology Management Section, National Centre for Genetic
Engineering and Biotechnology (BIOTEC), Project Grant No. P19-50231.
S. De la Peña-Lastra and colleagues thank the Atlantic Islands National
Maritime-Terrestrial Park authorities and guards. A. Mateos and co-authors
would like to thank Secretaria Regional doAmbiente eAlterações Climáticas
Açores for the permission granted for the sampling (Licença nº 16/2021/
DRAAC). To the ECOTOX group for co-funding the trip. J. Mack & D.P. Overy
were funded byAgriculture &Agri-Food Canada (Project ID#002272: Fungal
and Bacterial Biosystematics-bridging taxonomy and “omics” technology in
agricultural research and regulation) and are grateful for molecular sequencing support from the Molecular Technologies Laboratory (MTL) at the Ottawa
Research & Development Centre of Agriculture & Agri-Food Canada. The
study of P. Czachura was funded by the National Science Centre, Poland,
under the project 2019/35/N/NZ9/04173. The study of M. Piątek and coauthors was funded by the National Science Centre, Poland, under the
project 2017/27/B/NZ9/02902. O. Yarden and L. Granit were funded by the
Israel Science Foundation (grant number 888/19). H. Taşkın and colleagues
received support from the BulgarianAcademy of Sciences and the Scientific
and Technological Research Council of Türkiye (Bilateral grant agreement
between BAS and TÜBİTAK, project number 118Z640). The authors would
also like to thank S. Şahin (İzmir, Türkiye) for conveying one of the localities
of A. abscondita. Andrew Miller would like to thank the Roy J. Carver Biotechnology Center at the University of Illinois for Sanger sequencing.
E.R. Osieck thanks Staatsbosbeheer for permission to collect fungi in Nieuw
Wulven, in the Netherlands. P. van ‘t Hof and co-authors thank the Galapagos Genetic Barcode project supported by UK Research and Innovation,
Global Challenges Research Fund, Newton Fund, University of Exeter,
Galapagos Science Center, Universidad San Francisco de Quito, Galapagos
Conservation Trust, and Biosecurity Agency of Galapagos (ABG).Peer reviewe
- …