37 research outputs found

    The Large Observatory for x-ray timing

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study

    Cosmic ray oriented performance studies for the JEM-EUSO first level trigger

    Get PDF
    JEM-EUSO is a space mission designed to investigate Ultra-High Energy Cosmic Rays and Neutrinos (E > 5 ⋅ 1019 eV) from the International Space Station (ISS). Looking down from above its wide angle telescope is able to observe their air showers and collect such data from a very wide area. Highly specific trigger algorithms are needed to drastically reduce the data load in the presence of both atmospheric and human activity related background light, yet retain the rare cosmic ray events recorded in the telescope. We report the performance in offline testing of the first level trigger algorithm on data from JEM-EUSO prototypes and laboratory measurements observing different light sources: data taken during a high altitude balloon flight over Canada, laser pulses observed from the ground traversing the real atmosphere, and model landscapes reproducing realistic aspect ratios and light conditions as would be seen from the ISS itself. The first level trigger logic successfully kept the trigger rate within the permissible bounds when challenged with artificially produced as well as naturally encountered night sky background fluctuations and while retaining events with general air-shower characteristics

    Science of atmospheric phenomena with JEM-EUSO

    Full text link

    In-orbit performance of Herschel-HIFI

    Get PDF
    Aims: In this paper the calibration and in-orbit performance of the Heterodyne Instrument for the Far-Infrared (HIFI) is described. Methods: The calibration of HIFI is based on a combination of ground and in-flight tests. Dedicated ground tests to determine those instrument parameters that can only be measured accurately using controlled laboratory stimuli were carried out in the instrument level test (ILT) campaign. Special in-flight tests during the commissioning phase (CoP) and performance verification (PV) allowed the determination of the remaining instrument parameters. The various instrument observing modes, as specified in astronomical observation templates (AOTs), were validated in parallel during PV by observing selected celestial sources. Results: The initial calibration and in-orbit performance of HIFI has been established. A first estimate of the calibration budget is given. The overall in-flight instrument performance agrees with the original specification. Issues remain at only a few frequencies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA

    Erratum to: Performances of JEM-EUSO: angular reconstruction (Exp Astron, 10.1007/s10686-013-9371-0)

    Get PDF
    erratu

    Science of atmospheric phenomena with JEM-EUSO

    Get PDF
    The main goal of the JEM-EUSO experiment is the study of Ultra High Energy Cosmic Rays (UHECR, 10^{19}−10^{21} e V), but the method which will be used (detection of the secondary light emissions induced by cosmic rays in the atmosphere) allows to study other luminous phenomena. The UHECRs will be detected through the measurement of the emission in the range between 290 and 430 m, where some part of Transient Luminous Events (TLEs) emission also appears. This work discusses the possibility of using the JEM-EUSO Telescope to get new scientific results on TLEs. The high time resolution of this instrument allows to observe the evolution of TLEs with great precision just at the moment of their origin. The paper consists of four parts: review of the present knowledge on the TLE, presentation of the results of the simulations of the TLE images in the JEM-EUSO telescope, results of the Russian experiment Tatiana–2 and discussion of the possible progress achievable in this field with JEM-EUSO as well as possible cooperation with other space projects devoted to the study of TLE – TARANIS and ASIM. In atmospheric physics, the study of TLEs became one of the main physical subjects of interest after their discovery in 1989. In the years 1992 – 1994 detection was performed from satellite, aircraft and space shuttle and recently from the International Space Station. These events have short duration (milliseconds) and small scales (km to tens of km) and appear at altitudes 50 – 100 km. Their nature is still not clear and each new experimental data can be useful for a better understanding of these mysterious phenomena
    corecore