2,026 research outputs found

    ArgR is an essential local transcriptional regulator of the arcABC-operon in Streptococcus suis and crucial for biological fitness in acidic environment

    Get PDF
    Streptococcus suis is one of the most important pathogens in pigs and can also cause severe infections in humans. Despite its clinical relevance very little is known about the factors contributing to its virulence. Recently, we identified a new putative virulence factor in Streptococcus suis, the arginine deiminase system (ADS), an arginine catabolic enzyme system encoded by the arcABC-operon, which enables Streptococcus suis to survive in acidic environment. In this study, we focused on ArgR, an ADS associated regulator belonging to the ArgR/AhrC arginine repressor family. Using an argR knock-out strain we could show that ArgR is essential for arcABC-operon expression and necessary for the biological fitness of Streptococcus suis. By cDNA expression microarray analyses and quantitative real time RT-PCR we found that the arcABC-operon is the only gene cluster regulated by ArgR, which is in contrast to many other bacteria. Reporter gene analysis with gfp under the control of the arcABC promoter demonstrated that ArgR is able to activate the arcABC promoter. Electrophoretic mobility shift assays with fragments of the arcABC promoter and recombinant ArgR, and chromatin immunoprecipitation with antibodies directed against ArgR revealed that ArgR interacts with the arcABC promoter in vitro and in vivo by binding to a region from -147 to 72 bp upstream of the transcriptional start point. Overall our results show that in Streptococcus suis ArgR is an essential, system specific transcriptional regulator of the ADS directly interacting with the arcABC promoter in vivo

    Role of glucose and CcpA in capsule expression and virulence of Streptococcus suis

    Get PDF
    Streptococcus suis is one of the most important pathogens in pigs and is also an emerging zoonotic agent. After crossing the epithelial barrier, S. suis causes bacteraemia, resulting in meningitis, endocarditis and bronchopneumonia. Since the host environment seems to be an important regulatory component for virulence, we related expression of virulence determinants of S. suis to glucose availability during growth and to the sugar metabolism regulator catabolite control protein A (CcpA). We found that expression of the virulence-associated genes arcB, representing arcABC operon expression, cps2A, representing capsular locus expression, as well as sly, ofs, sao and epf, differed significantly between exponential and early stationary growth of a highly virulent serotype 2 strain. Deletion of ccpA altered the expression of the surface-associated virulence factors arcB, sao and eno, as well as the two currently proven virulence factors in pigs, ofs and cps2A, in early exponential growth. Global expression analysis using a cDNA expression array revealed 259 differentially expressed genes in early exponential growth, of which 141 were more highly expressed in the CcpA mutant strain 10¿ccpA and 118 were expressed to a lower extent. Interestingly, among the latter genes, 18 could be related to capsule and cell wall synthesis. Correspondingly, electron microscopy characterization of strain 10¿ccpA revealed a markedly reduced thickness of the capsule. This phenotype correlated with enhanced binding to porcine plasma proteins and a reduced resistance to killing by porcine neutrophils. Taken together, our data demonstrate that CcpA has a significant effect on the capsule synthesis and virulence properties of S. suis

    Generation of femtosecond paraxial beams with arbitrary spatial distribution

    Get PDF
    We present an approach to generate paraxial laser beams with arbitrary spatial distribution in the femtosecond time regime. The proposed technique is based upon a pair of volume phase holographic gratings working in parallel arrangement. It exploits the spatial coherence properties of the incoming laser beam in a compact and robust setup that mitigates angular and spatial chirp. The gratings were recorded in a photopolymerizable glass with a high optical damage threshold and a large optical throughput. Setup performance is studied and experimentally demonstrated by generating Laguerre-Gaussian femtosecond pulses. © 2010 Optical Society of America.We thank Fransisco del Monte for valuable advice and CAI-UCM facilities. The financial support from the Spanish Ministry of Science and Innovation under projects TEC 2008-04105, CTQ2008-02578/BQU and Consolider SAUUL CSD2007-00013 is acknowledged. M. P. H.-G. and P. V. acknowledge the Spanish Ministry of Foreign Affairs and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brazil) for financial support, respectively.Peer Reviewe

    Gauge Fluxes in F-theory and Type IIB Orientifolds

    Full text link
    We provide a detailed correspondence between G_4 gauge fluxes in F-theory compactifications with SU(n) and SU(n)x(1) gauge symmetry and their Type IIB orientifold limit. Based on the resolution of the relevant F-theory Tate models we classify the factorisable G_4-fluxes and match them with the set of universal D5-tadpole free U(1)-fluxes in Type IIB. Where available, the global version of the universal spectral cover flux corresponds to Type IIB gauge flux associated with a massive diagonal U(1). In U(1)-restricted Tate models extra massless abelian fluxes exist which are associated with specific linear combinations of Type IIB fluxes. Key to a quantitative match between F-theory and Type IIB is a proper treatment of the conifold singularity encountered in the Sen limit of generic F-theory models. We also shed further light on the brane recombination process relating generic and U(1)-restricted Tate models.Comment: 53 pages, 3 figures; v2: Refs added; v3: minor corrections to match version published in JHE

    Tate Form and Weak Coupling Limits in F-theory

    Full text link
    We consider the weak coupling limit of F-theory in the presence of non-Abelian gauge groups implemented using the traditional ansatz coming from Tate's algorithm. We classify the types of singularities that could appear in the weak coupling limit and explain their resolution. In particular, the weak coupling limit of SU(n) gauge groups leads to an orientifold theory which suffers from conifold singulaties that do not admit a crepant resolution compatible with the orientifold involution. We present a simple resolution to this problem by introducing a new weak coupling regime that admits singularities compatible with both a crepant resolution and an orientifold symmetry. We also comment on possible applications of the new limit to model building. We finally discuss other unexpected phenomena as for example the existence of several non-equivalent directions to flow from strong to weak coupling leading to different gauge groups.Comment: 34 page

    Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,γ) in the ESR Storage Ring

    Get PDF
    © 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio

    F-Theory GUT Vacua on Compact Calabi-Yau Fourfolds

    Full text link
    We present compact three-generation F-theory GUT models meeting in particular the constraints of D3-tadpole cancellation and D-term supersymmetry. To this end we explicitly construct elliptically fibered Calabi-Yau fourfolds as complete intersections in a toric ambient space. Toric methods enable us to control the singular geometry of the SU(5) GUT model. The GUT brane wraps a non-generic del Pezzo surface admitting GUT symmetry breaking via hypercharge flux. It is contractible to a curve and we demonstrate the existence of a consistent decoupling limit. We compute the Euler characteristic of the singular Calabi-Yau fourfold to show that our three-generation flux solutions obtained via the spectral cover construction are consistent with D3-tadpole cancellation.Comment: 22+12 pages; v2: minor clarifications on decoupling limi

    Massive Abelian Gauge Symmetries and Fluxes in F-theory

    Get PDF
    F-theory compactified on a Calabi-Yau fourfold naturally describes non-Abelian gauge symmetries through the singularity structure of the elliptic fibration. In contrast Abelian symmetries are more difficult to study because of their inherently global nature. We argue that in general F-theory compactifications there are massive Abelian symmetries, such as the uplift of the Abelian part of the U(N) gauge group on D7-branes, that arise from non-Kahler resolutions of the dual M-theory setup. The four-dimensional F-theory vacuum with vanishing expectation values for the gauge fields corresponds to the Calabi-Yau limit. We propose that fluxes that are turned on along these U(1)s are uplifted to non-harmonic four-form fluxes. We derive the effective four-dimensional gauged supergravity resulting from F-theory compactifications in the presence of the Abelian gauge factors including the effects of possible fluxes on the gauging, tadpoles and matter spectrum.Comment: 49 page

    Measurement of the Ge 70 (n,γ) cross section up to 300 keV at the CERN n-TOF facility

    Get PDF
    ©2019 American Physical Society.Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on Ge70, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n-TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT=5 keV to kT=100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60-80.Peer reviewedFinal Published versio
    corecore