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1 Introduction

Understanding Abelian gauge symmetries and their fluxes in F-theory [1] (for recent reviews

see [2, 3]) is both of conceptual interest and of phenomenological importance. F-theory

has recently attracted revived interest from the perspective of string phenomenology due

to its virtue of reconciling the idea of brane-localised gauge degrees of freedom with the

appearance of exceptional gauge symmetry [4–7]. In this context non-Abelian symmetries,

whose geometric description in F-theory compactifications is well-understood, have been

exploited rather heavily. An understanding of the geometric description of Abelian sym-

metries in F-theory has, however, remained rather elusive despite their being well under
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control as typical ingredients of perturbative Type II orientifold vacua with many appli-

cations to model building. Not only in view of recent applications to model building but

also from a more formal perspective it is therefore high time to expand on our knowledge

of Abelian gauge symmetries in F-theory.

To appreciate the difference compared to U(1) symmetries, recall that the non-Abelian

gauge dynamics in F-theory are localised at the singularities of the elliptic Calabi-Yau

fourfold Y4. The structure of these degenerations has been under intense scrutiny since the

early days of F-theory [8–11]. What makes a proper implementation of these degenerations

technically involved is that the singularities really sit in the elliptic fiber. Consequently a

prerequisite for studying F-theory models including its phenomenological applications is a

detailed understanding not only of the physical compactification space B, but of the fully

fledged elliptic fibration over B. Motivated by the prospects of F-theory for GUT model

building in the spirit of [4–7], a lot of recent effort has gone into the construction of F-theory

compactifications to four dimensions, extending the technology of Calabi-Yau constructions

with 7-branes from the Type IIB regime [12] into the non-perturbative one. An example

of an F-theory GUT compactification to four dimensions defined in terms of a base space

B together with a Tate model thereon was found in [13]. The construction of fully-fledged

elliptic fourfolds for F-theory compactifications with GUT physics was initiated in [14, 15]

using the toric framework developed for Calabi-Yau threefolds in [16, 17]. In this approach

the existence of the non-Abelian gauge dynamics can be guaranteed by an explicit resolution

of the singular Calabi-Yau space. By now large classes of well-controlled fourfolds have

been found [18, 19]. The importance of the full resolution for a well-defined F-theory

compactification with gauge dynamics and matter has more recently been stressed also in

the studies [20–22].

Tracing back the geometric origin Abelian gauge bosons, on the other hand, is less

immediate because these are in general not localised along singular divisors - apart from the

obvious exception of Cartan generators of a non-Abelian gauge group G. Nevertheless, an

unambiguous detection of the presence of massless non-Cartan U(1) gauge bosons hinges

again upon a detailed understanding of the singularity structure of the fourfold and in

particular its resolution - this time, however, along complex codimension-two loci, i.e.

curves. This was established in [23] in the framework of the U(1) restricted Tate model

as a technically reliable method to guarantee a massless non-Cartan U(1) symmetry in 4-

dimensional F-theory vacua. For massless U(1) bosons full control of the elliptic fibration

is even more desperately needed than in the context of non-Abelian symmetries; namely,

as emphasized also in [24] U(1)s are sensitive to the full global details of a model.1 A

different approach based on extending a dP9 fibration over a 7-brane with non-Abelian

gauge symmetry is advocated in [28, 29].

Likewise, a proper understanding of gauge fluxes is expected to involve, at least for

Abelian fluxes, a direct handle on the dual M-theory 4-form field strength G4 defined

globally on the fourfold, which so far has remained elusive.

1In particular, while models without Abelian gauge bosons exhibit an encouraging match [14, 15] between

the Euler characteristic of the full resolved fourfold and that calculated by means of a semi-local spectral

cover construction [24–27], this is no longer true in vacua with U(1) symmetries [23].
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In this article, our main focus is on the appearance of massive Abelian gauge sym-

metries and their associated gauge fluxes in F-theory. We propose to study these in the

context of non-Kähler resolution of the singular fourfold Y4 and give explicit formulae for

their gauge fluxes in terms of a distinguished set of non-harmonic 2- and 4-forms. Our

guiding principle is the structure of massive U(1) symmetries in the perturbative regime of

Type IIB orientifolds, whose F-theory uplift we investigate. While the massiveness of the

U(1) is encoded in a set of differential relations, many of the physically relevant quantities

such as tadpoles and chirality turn out to involve only algebraic expressions. We expect

these to generalise to massless U(1)s as well in a way that can be applied to global F-theory

compactifications with U(1) symmetries as considered in [23].

Abelian gauge symmetries are ubiquitous in perturbative string theory. A subset of

these that is especially important for phenomenological purposes comprises the U(1) sym-

metries that arise from D-branes in type IIB orientifold compactifications. The canonical

example is the diagonal U(1) within the U(N) gauge group associated to a stack of N

D7-branes. This sector has a rich structure in IIB: the U(1) symmetries can be even or odd

under the orientifold action, they can have associated gauge fluxes turned on, they can be

Stückelberg massive or not, anomalous or non-anomalous.

As pointed out above, understanding this part of an F-theory compactification has

essential bearings on phenomenological applications. In type IIB constructions the Abelian

factors have been the central players in much of the resulting phenomenology affecting, as a

brief sample: the chiral spectrum (see e.g. [30–33] for reviews), selection rules on field theory

couplings [34–37], moduli stabilisation and supersymmetry breaking [38, 39], mixing with

visible sector fields [40–44], gauge coupling unification [45] amongst many other features.

In F-theory models U(1) symmetries also have a central role, see [46–55] and references

therein for an incomplete list of uses.

In contrast to the IIB case, the gauge group associated with a singularity of type AN−1

in F-theory is at first sight not U(N), but SU(N). To see how the diagonal U(1) can ‘disap-

pear’ as a massless gauge symmetry in uplifting from IIB to F-theory consider a IIB setup

of a stack of D7-branes and an O7-plane wrapping 4-cycles in a CY three-fold which are not

in the same homology class. In that case the diagonal U(1) on the D7-stack always picks up

a Stückelberg mass [56–58] by eating the orientifold odd axion arising from reducing the RR

2-form on the odd 2-form which is Poincaré dual to the odd combination of the D7 and O7

cycles [59, 60]. Since this U(1) is always massive, a geometric F-theory uplift which only ac-

counts for the massless U(1)s will completely miss it. As referred to above, the U(1) can still

play a crucial role in four-dimensional physics despite being massive, for example via flux

turned on along it or by affecting the low energy selection rules left as a global symmetry.2

The key to understanding the nature of such U(1)s in F-theory is to consider the

dual M-theory setup of a compactification to three dimensions. This allows to analyze the

effective action and F-theory limit along the lines of [61]. Then, as first proposed in [23],

2Note that, as discussed in [97], all non-perturbative effects should vanish in the decompactification

limit. Because of this D(−1)-instantons are not expected to violate the selection rules non-linearly in the

superpotential and hence we expect that even in F-theory the selection rules persist and are only violated

by non-perturbative effects involving the Kahler moduli.
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such U(1)s can be accounted for by considering non-Kähler deformations of M-theory where

the U(1) gauge-field arises from reducing the M-theory three-form C3 on a non-closed two-

from w0. In this paper we build on this observation and complete it to a framework which

can account for the structure associated to such U(1)s that is present in IIB.

Our primary guiding principle is that the geometric structure we introduce in the M-

theory setup should reduce, in the Type IIB limit, to well-known perturbative expressions

involving D7-branes. We will incorporate type IIB quantities arising from compactifications

involving D7-branes that are affected by the diagonal Abelian U(1) factor in terms of a

conjectured M-theory geometry.

The particular IIB expressions we will reproduce are the four-dimensional supergravity

and its gauging , the D3- and D5-tadpoles, and the chirality induced on intersecting D7-

branes in the presence of gauge flux. Along the way we provide a detailed match of the

3-dimensional M-theory compactification uplifted to F-theory on the one hand and the

Type IIB effective action with D7-branes on the other. Independently of this approach

we will also provide complementary arguments for the conjectured geometry directly from

studying the geometry of an AN−1 singularity and by considering the uplift of the IIB

base geometry to the elliptic fibration. The main challenge of this strategy of using the

IIB limit as a guide is that more work is needed to see how our structure generalises to

F-theory geometries with no IIB weak coupling limit such as those involving exceptional

singularities. However, we believe our analysis is the natural starting point from which to

attack such questions.

The paper is composed as follows. In section 2 we collect the relevant type IIB physics,

including a careful assessment of all π’s and i’s, which we aim to reproduce from F-theory.

The following two sections form the core of our work. In section 3 we introduce a set of non-

harmonic 2- and 4-forms on the elliptic fibration along with their intersection numbers in a

way that will subsequently result in a complete match of the properties of U(1) symmetries

and gauge fluxes known from Type IIB limits. We express the U(1) gauge fluxes in terms

of these forms and demonstrate that the induced M5- and M2-tadpoles precisely match

the D5- and D3-tadpole in Type IIB orientifolds. We also find a simple chirality formula

that encapsulates the known expressions for the chiral index in the perturbative limit.

Section 4 is devoted to an in depth analysis of the effective action of M-theory reduction

involving the set of non-harmonic forms introduced before. We begin by laying out the

3-dimensional supergravity with special emphasis on the gauging induced by reduction of

the M-theory 3-form along these non-harmonic forms. Parts of this analysis are relegated

to appendix B. A detailed account of the F-theory lift then establishes a perfect match

with the Type IIB gauging and D-terms in perturbative limits of F-theory. In section 5

we discuss the geometry associated to the U(1)s thereby providing independent motivation

for the structure proposed. We summarise our results in section 6.

2 Abelian gauge symmetries in type IIB orientifolds

We begin by reviewing the role played by the diagonal U(1) arising on stacks of D7-branes

in orientifold compactifications of Type IIB string theory. We will focus specifically on
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the gauging of Ramond-Ramond (R-R) scalars induced by the Stückelberg mechanism as

well as the contribution to the D3- and D5-brane tadpoles from fluxes along such diagonal

U(1)s. These aspects will turn out to be key in inferring the nature of the corresponding

U(1)s and their fluxes in F-theory.

We consider a compactification of Type IIB string theory on a Calabi-Yau threefold

X3, modded out by the orientifold action Ω(−1)FLσ [62, 63]. The holomorphic involution

σ acts on the Kähler and holomorphic three-form J and Ω as σ∗J = J , σ∗Ω = −Ω. Under

the induced action of σ the cohomology groups Hp,q(X3) split into H
p,q
± (X3). Our notation

for a basis of the 2- and 4-forms is summarized as follows: a basis of H
1,1
+ is denoted by

ωα while its dual in H
2,2
+ is denoted by ω̃α with α = 1, . . . h1,1

+ . Moreover, the negative

eigenspace H
1,1
− has a basis ωa and its dual H

2,2
− a basis ω̃a with a = 1, . . . h1,1

− . The two-

and four-forms are dual in the sense that
∫

X3

ωa ∧ ω̃b = δb
a,

∫

X3

ωα ∧ ω̃β = δβ
α. (2.1)

Since the volume form is even under the involution the non-trivial intersection numbers

are given by

Kαβγ =

∫

X3

wα ∧ wβ ∧ wγ ∈ 2Z, Kαbc =

∫

X3

wα ∧ wb ∧ wc ∈ 2Z. (2.2)

It is important to note that due to the fact that we have chosen a basis with definite orien-

tifold parity all triple intersection numbers will be even integers, as given any intersection

point the three divisors will also intersect at the orientifold image of this point.

In the Kaluza-Klein reduction the Kähler form J of X3 and the R-R and NS-NS forms

enjoy an expansion

J = vαωα, C2 = caωa, B2 ≡ B− + B+ = baωa + bαωα, (2.3)

C4 = cαω̃α + cα
2 ∧ ωα + c4 + . . . , C6 = (c̃2)a ∧ ω̃a + . . . .

Here we have restrict ourselves to expansion along the even-dimensional cohomology as

we will focus on Abelian gauge potentials arising from open strings propagating on D7-

branes.3 Note that in the above the component of the B-field B+ along the even cycles,

bα, is not a continuous modulus but can only take the discrete values 0, 1
2 consistent with

the orientifold action.

2.1 D7-branes and the Stückelberg coupling

Let us now consider the gauge dynamics of a stack of NA D7-branes along the holomorphic

divisor DA. The orientifold symmetry σ maps DA to its orientifold image D′
A = σ∗DA, so

that in the upstairs geometry, i.e. on the Calabi-Yau X3 prior to orientifolding, each brane

is accompanied by its image brane. One distinguishes three qualitatively different classes

of brane configurations:

3Expansion of C4 along H3(X3) leads to RR U(1) fields. Furthermore we are not considering the U(1)

gauge factors from D3-branes at this stage.

– 5 –



J
H
E
P
1
2
(
2
0
1
1
)
0
0
4

1. [DA] 6= [D′
A] ≡ [σ∗DA],

2. [DA] = [D′
A] but DA 6= D′

A point-wise,

3. DA = D′
A point-wise.

Here the class [DA] ∈ H2(X3) is Poincaré dual to the divisor class DA. We define the

objects

D±
A = DA ∪ (±D′

A) , (2.4)

with Poincaré dual classes [D±
A ] ∈ H2(DA)±. Here −D′

A is orientation reversed with respect

to D′
A. Note that for orientifold invariant cycles one should include an extra factor of 1

2 to

ensure D+
A = DA. This allows us to evaluate the corresponding wrapping numbers along

the basis elements of H±
4 (X3, Z) as

Cα
A =

∫

D+
A

ω̃α , Ca
A =

∫

D−

A

ω̃a , (2.5)

In the basis (ω̃α, ω̃a) normalized by (2.1) the constants are actually integers characterizing

the embedding of the D7-brane. Note that in the last two cases one finds that D−
A is trivial

in homology such that Ca
A = 0.

Let us discuss which gauge theory arises from the above D7-brane configurations. The

first situation gives rise to Abelian gauge bosons. In the absence of gauge flux the gauge

group is U(NA) because upstairs DA and D′
A each carry one U(NA) gauge factor, and

the two are then identified under σ. Note that a priori the gauge group is U(NA) =

SU(NA) × U(1)A, not SU(NA), but the U(1)A is massive due to a Stückelberg mechanism

even in the absence of gauge flux, as will be reviewed in detail below. In the other two cases,

the orientifold action projects the gauge group down to symplectic or special orthogonal

gauge groups, depending on the details of the orientifold action. An important exception

occurs for branes of type 2 that lie in the same homology class as the O7-plane, but are

not placed on top of it. Such configurations carry gauge group U(NA). The difference to

branes of the first type is that in absence of flux the Abelian part does not become massive,

as we will review below.

In the following we will concentrate on configurations leading to the gauge group

U(NA), which contains a diagonal U(1). The field strength F̂A of such a stack A appears

in the Chern-Simons and DBI action only in the gauge invariant combination FA
D7 with

the NS-NS B-field. The Cartan subsector of the brane gauge theory enjoys the expansion

2πα′ FA
D7 = T 0

A

(

2πα′F̂A
0 − ı∗B2

)

+ 2πα′

NA−1
∑

i=1

T i
A F̂A

i . (2.6)

Here T 0
A = 1NA×NA

is the generator of the diagonal U(1)A ⊂ U(NA), while T i
A are the

generators of the Cartan of SU(NA). We use the index range I = (0, i) to label the full set

of generators. The gauge field F̂A
I splits into the field strength in four dimensions FA

I and

the internal gauge flux FA
I along the cycle wrapped by the divisor

F̂A
I = FA

I + FA
I . (2.7)
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The fluxes on the image stack D′
A are given by FA′

I = −σ∗FA
I , where the minus sign is due

to the worldsheet parity Ω. This FA
I will sometimes be further expanded as

FA
I = FA,a

I ωa + FA,α
I ωα , (2.8)

where we are assuming, for notational simplicity, that the flux can be expressed in terms

of the pull-back of two-forms from the bulk onto the brane and we are suppressing the

explicit pull-back. Note that it is also possible to turn on flux which cannot be written

as the pull-back of a cohomologically non-trivial bulk two-form. This type of flux will not

be considered in the current analysis. Let us introduce some remaining pieces of notation.

It is convenient to combine the diagonal Abelian part of the gauge flux and the discrete

background B+-field as

F̃A
0 = 2πα′FA

0 − ı∗B+ (2.9)

with components

F̃A,α
0 = 2πα′FA,α

0 − bα , F̃A,a
0 = 2πα′FA,a

0 . (2.10)

The latter are the discrete combination of fluxes appearing, for example, in the chirality

formulas summarized in appendix B and are subject to the Freed-Witten quantisation

condition [64].

The diagonal part of the four-dimensional field strength, FA
0 , is special because it is

well-known to acquire a mass via the Stückelberg mechanism. For D7-branes, there are

actually 2 types of Stückelberg terms contributing to a mass of the Abelian gauge boson, see

e.g. [60, 65] for recent expositions. In the sequel these will be referred to as the geometric

and the flux induced couplings, respectively. A fact that will be crucial to matching the IIB

configuration with F-theory is that the geometric mass terms depend only on the details of

the compactification manifold irrespective of the presence of gauge flux. Accordingly, the

gauge boson of the diagonal U(1)A ⊂ U(NA) always acquires a mass term that cannot be

switched off. The only exception is the case where [DA] = [D′
A] but DA 6= D′

A pointwise.

The analogue of this mass term is automatically built in geometrically in F-theory. Both

in Type IIB and in F-theory only special linear combinations of Abelian gauge bosons

stemming from different branes can stay massless and give rise to a residual Abelian gauge

symmetry. Therefore, in absence of gauge flux, Abelian gauge symmetry is non-local

in nature since it depends on the interplay of several brane stacks. The second, flux-

induced type of mass terms, by contrast, are extra features that depend on the specific flux

configuration. These terms yield an extra contribution to the full mass matrix. Besides,

gauge flux which is not embedded into U(NA) diagonally can of course break the non-

Abelian gauge groups and thus give rise to further Cartan U(1) symmetries which are not

present in the fluxless case.

The Stückelberg couplings are induced by interactions with the RR-background fields

SCS = −2π

∫

R1,3×DA

∑

p

C2p ∧ tr
[

e2πα′
F

A
D7

]

√

Â(TD)

Â(ND)
. (2.11)

The terms relevant for the Stückelberg mechanism follow by dimensional reduction of this

Chern-Simons coupling to linear order in FA
0 taking into account both the contributions

– 7 –
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from the brane along DA and its orientifold image along D′
A. Due to the orientifold Z2

quotient one has to divide by 2 after adding the Chern-Simons actions of brane and image

brane. Our conventions for the effective action are collected in appendix A. The result

contains two qualitatively different couplings

SSt. = − 1

4κ2
4

∑

A

(

Qa
A

∫

R1,3

FA
0 ∧

(

c̃2 a −Kαacb
ccα

2

)

− QAα

∫

R1,3

FA
0 ∧ cα

2

)

, (2.12)

where (c̃2 a, c
α
2 ) are the two-forms appearing in (2.3) which combine in the first integral to

two-forms dual to the axionic scalars ca. In this expression we have defined the constants

Qa
A = 2πα′NACa

A , (2.13)

QAα = −2πα′NA

(

Kαβγ F̃A,β
0 C

γ
A + Kαbc F̃A,b

0 Cc
A

)

, (2.14)

where F̃α
A and F̃a

A were defined in (2.8) and (2.10).4 The first coupling Qa
A is completely

geometric in that it only depends on the wrapping numbers and not on any fluxes. If these

odd wrapping numbers are non-vanishing then the U(1)A will be massive as we will see

in the next section. The second coupling QAα depends crucially on the fluxes F̃α
A and F̃a

A

such that if all the fluxes are turned off this does not contribute to the U(1) mass.

2.2 The effective four-dimensional action

Let us now discuss the couplings (2.12) as part of the four-dimensional effective action ob-

tained by reducing the orientifold set-up with D7-branes. Our conventions for the canonical

N = 1 supergravity form for the four-dimensional effective action are [66]

S(4)
N=1 =

1

κ2
4

∫

[

− 1
2R ∗4 1 − KMN̄∇MM ∧ ∗4∇M̄ N̄

− 1
2RefAB FA ∧ ∗4F

B − 1
2 ImfAB FA ∧ FB − (VF + VD) ∗4 1

]

, (2.15)

where

VF = eK
(

KMN̄DMWDN̄W̄ − 3 |W |2
)

, VD = 1
2 (Ref)−1 AB DADB . (2.16)

The couplings determined in equation (2.12) result in a gauging of the shift symmetry

of the axions ca and cα after their respective dual two-forms c̃2 a and cα
2 are eliminated from

the four-dimensional effective action. The four-dimensional chiral fields containing these

4Note that turning on fluxes in the Cartan of the SU(NA) factor induces a coupling for the corresponding

four-dimensional fields of the type (2.14). For gauge flux inherited from the bulk the commutant Abelian

subgroup acquires a mass and contributes to the Fayet-Ilopoulos term. Both effects are absent only if the

flux does not descend from two-forms defined on X3.
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axions are given by5

Ga = ca − τba,

Tα =
1

2
Kαβγvβvγ + i

(

cα − 1

2
Kαbcc

bbc

)

+
i

2 (τ − τ̄)
KαbcG

b
(

Gc − G
c)

=
1

2
Kαβγvβvγ + i

(

cα −Kαbcc
bbc
)

+
i

2
τKαbcb

b bc , (2.17)

where τ = C0 + i e−φ represents the axio-dilaton. The gauging of the axions results in the

appearance of covariant derivatives for these chiral fields of the form

∇Ga = dGa − Qa
AAA, (2.18)

∇Tα = dTα − iQAαAA. (2.19)

This implies that the U(1)A are non-linearly realized with field-independent Qa
A, QAα. It

is thus straightforward to determine the corresponding Killing vectors

Xa
A = −Qa

A , XAα = −iQAα . (2.20)

For later purposes we note that the gauge kinetic function of the D7-brane stack is

given in terms of the chiral fields as

fAA =
1

4
(2πα′)2NACα

ATα, (2.21)

where we neglect flux-induced contributions not relevant to our present analysis. Using the

fact that the effective theory is N = 1 supersymmetric one readily evaluates the D-terms

induced by the gaugings (2.18) and (2.19). This requires the Kähler metric for the chiral

multiplets. Explicitly, the kinetic terms of the moduli6 are encoded in the Kähler potential

K = − log
[

− i

∫

X3

Ω ∧ Ω̄
]

− log
[

− i(τ − τ̄)
]

− 2 log[V] , (2.22)

where V = 1
3!

∫

X3
J ∧ J ∧ J is the volume of X3 evaluated in the ten-dimensional Einstein

frame. The general expression for the D-terms is

i∂IDA = KIJ̄X̄J
A , (2.23)

where XJ
A are the Killing vectors of the gauged isometry, and KIJ̄ is the Kähler metric as

determined from the Kähler potential (2.22). Let us consider the case without gauged mat-

ter fields. Using the fact that the Killing vectors (2.20) are constant, one integrates (2.23)

to KJ̄X̄J
A = iDA. The first derivatives of the Kähler potential (2.22) are evaluated to be

∂GaK = − i

2V

∫

X3

ωa ∧ J ∧ B , ∂TαK = − vα

2V . (2.24)

5Note that the definitions of the complex coordinates τ and Tα are corrected when including massless

fields arising from the open string sector of the D7-branes. In particular, the D7-brane deformations correct

τ , while the Tα are modified in the presence of Wilson line moduli.
6In addition to Ga and Tα these include the complex structure moduli as well as the axio-dilaton τ .
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One thus concludes that the U(1)A D-term is given by

1

2πα′
DA =

NA

2V

∫

DA

J ∧ (2πα′FA − ı∗B2) (2.25)

=
vα

2VNA

(

KαβγF̃A,β
0 C

γ
A + KαacF̃A,c

0 Ca
A −Kαacb

cCa
A

)

.

Here the term involving ba arises from the gauging of Ga and is universally present even in

case all fluxes are set to zero. The remaining terms arise from the gauging of Tα and are ab-

sent if the discrete data corresponding to the gauge fluxes and the discrete B-field are zero.

The mass term for the diagonal U(1) induced by the Stückelberg gauging takes the

general form m2
AB ∝ KIJ̄XI

AX̄J
B . To obtain the physical mass it is necessary to diagonalize

the kinetic terms and then rescale the gauge fields to bring the kinetic terms into canonical

form. To illustrate the nature of the purely geometric mass term let us for simplicity focus

only on a single stack of D7-branes and set the gauge fluxes F̃ to zero. Using the gauge

kinetic function (2.21) to rescale the gauge fields one obtains the mass7

m2 = − 2

RefAA
KGaḠbN2

ACa
ACb

A

= 4NACa
ACb

A

(

Cα
AKα − eφCα

AKαbcb
bbc
)−1

×
[

eφ

V Kab −
1

2V2
KacKbdb

cbd +
1

VKαβKαacKβbdb
cbd

]

. (2.26)

Note that the first, purely geometric, term in the square brackets roughly scales with the

volume as V− 2
3 while the terms dependent on the moduli ba scale as V− 4

3 and are therefore

sub-leading contributions in a large volume expansion. The geometric Stückelberg mass is

therefore suppressed by a factor of gs with respect to the Kaluza-Klein scale.8

Finally, let us consider brane stacks of the type [DA] = [D′
A] that lie in the same

homology class as the O7-plane but do not coincide with it. In this case, the gauge is

U(NA), and in absence of flux the U(1)A factor survives as a massless gauge symmetry.

The reason is that the geometric Stückelberg terms rely on non-zero wrapping numbers

Ca
A with respect to involution-odd classes, which vanish for branes in the same class as the

O7-plane. Consistently, there arises no B− dependent Fayet-Iliopoulos D-term since the

B−-field does not couple to DA.

2.3 The induced D5- and D3-tadpoles in IIB

As is well known the Chern-Simons couplings of C8 and C6 in (2.11) give rise to modified

Bianchi identities for the respective dual field strengths F1 = dC0 and F3 = dC2. The

equation of motion for C8, once we include both the branes and images as well as the

7The Kähler metric is given in [62, 63].
8In anisotropic compactifications, due to the different Kaluza-Klein scales associated with brane and bulk

cycles the precise value of the Stückelberg mass can vary drastically for anomalous versus non-anomalous

U(1)s. See e.g. [67] for details.
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orientifold contribution and impose the suitable duality relation, gives9

dF1 =
1

2

∑

A

NA δ(D+
A) − 4 δ(DO7) . (2.27)

The δ(D) are delta-currents localizing on the divisor D, i.e. sharply localized two-forms

on the D7-branes D+
A and the orientifold plane DO7. These are given by δ(D+

A ) = Cα
Aωα,

δ(D−
A ) = Ca

Aωa in terms of the wrapping numbers (2.5). The factor of 1
2 on the right

hand side of this relation is a consequence of the orientifold geometry. It is consistent with

the fact that in order to evaluate the monodromy of, say, a probe D(-1)-brane one must

consider loops which encircle both the brane and the image brane, resulting in an integer

monodromy [68].

Consistency clearly requires the right hand side to vanish in cohomology imposing the

D7-brane tadpole cancellation condition

∑

A

NA ([DA] + [D′
A]) = 8[DO7] , (2.28)

which has to be evaluated in cohomology, e.g. by integrating over a basis of H2(X3).

Similarly one can proceed to evaluate the D5-brane tadpole constraint. The equation

of motion of C6 leads to

dF3 = −1

2

∑

A

NA

[

(2πα′FA,−
0 − ı∗B−

2 ) ∧ δ(D+
A) + (2πα′FA,+

0 − ı∗B+
2 ) ∧ δ(D−

A)
]

+4ı∗B2 ∧ δ(DO7) , (2.29)

where we have defined FA,±
0 = 1

2

(

FA
0 ± σ∗FA

0

)

and similarly for B±
2 . We see that if we

turn on flux along the diagonal U(1) of the D7-brane stack we induce a D5-tadpole

dF3 = −1

2

∑

A

NA

[

F̃A,α
0 ωα ∧ δ(D−

A) + (F̃A,a
0 − ba)ωa ∧ δ(D+

A)]
]

+4baωa ∧ δ(DO7) , (2.30)

with constant fluxes F̃α
A, F̃a

A defined in (2.8) and (2.10). Note that the ba moduli appear

in the expression (2.30) though if we integrate it over the basis of H4(X3) to extract

the tadpoles we can use the D7-tadpoles to eliminate this dependence on the continuous

modulus [12, 60] to yield the integrated D5-tadpole constraint

1

2

∑

A

NA

(

KαbcF̃A,α
0 Cb

A + KaβcF̃A,a
0 C

β
A

)

= 0 . (2.31)

The flux also induces a D3-tadpole which takes the form

ND3 + Ngauge =
N03

4
+
∑

A

NA
χ0(DA)

24
+

χ(D07)

6
, (2.32)

9Note that to derive the tadpole constraints in the democratic formulation one needs to take into account

an extra factor of 1
2

in the Chern-Simons action of D-branes and O-planes in order to capture only the

electric couplings. This is consistent with the derivation of the D3-tadpole via the Bianchi identity of the

self-dual F5 as e.g. in [69].
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with ND3 and NO3 counting the number of D3-branes and O3-planes, while χ(D07) and

χ0(DA) denote the Euler characteristic of the O7-plane and the modified (in the sense

of [68]) Euler characteristic of the 7-branes. We focus here on the gauge flux contribution

due to the diagonal U(1)A flux given by10

N (0)
gauge = − 1

4

∑

A

NA

(
∫

DA

F̃A
0 ∧ F̃A

0 +

∫

D′

A

F̃ ′
A
0 ∧ F̃ ′

A
0

)

(2.33)

= − 1

4

∑

A

NA

(

KαβγCα
AF̃A,β

0 F̃A,γ
0 + KαbcC

α
AF̃A,b

0 F̃A,c
0 + 2KabγCa

AF̃A,b
0 F̃A,γ

0

)

.

In section 3.3 we will see how fluxes along the (massive) diagonal U(1)s and the re-

sulting tadpoles (2.30) are uplifted to F-theory.

3 Massive U(1) symmetries and their fluxes in F-theory

In this section we formulate our proposal for describing massive Abelian symmetries in

F-theory. The key aspects of the Type IIB compactifications reviewed in section 2 will

be our guide in formulating the F-theory setup. In section 3.1 we begin with the well-

known implementation of the Cartan U(1)s that lie within the non-Abelian part of the

gauge group as resolution cycles in M-theory. In section 3.2 we introduce the details of our

proposal, namely we present the general form of the non-Kähler deformations in M-theory

which give rise to the massive U(1)s in F-theory. We have three independent pieces of

evidence for this picture: In section 3.3 we give a proposal for the form of the M-theory

uplift of orientifold even and odd IIB fluxes and check its validity by uplifting the IIB D3-

and D5-tadpoles. In section 3.4 we present a formula for the chiral index induced by these

G4-fluxes directly in F-theory which is in agreement with the known analogue for Type IIB

fluxes. The last piece of evidence will then be presented in section 4, where we compute the

resulting F-theory effective action, finding complete match with the Type IIB expressions

of section 2.

3.1 Cartan U(1)s from resolution of divisors

Let us consider F-theory compactified on an elliptically fibered Calabi-Yau fourfold Y4. The

complex structure of the two-torus fiber of Y4 corresponds to the axio-dilaton τ varying

over the base B3. We denote the projection to the base by

π : Y4 −→ B3, (3.1)

with 7-branes on divisors Db
A in the base B3. The location of these 7-branes is identified

by locating the singularities of the elliptic fiber. These are encoded by the discriminant

∆. In general, the 7-branes can admit non-Abelian gauge-groups GA, which implies that

Y4 is singular itself. While the Tate algorithm for singular elliptic fibrations often provides

an algorithm to read off the non-Abelian gauge groups of an F-theory compactification,

determining the appearance of Abelian vector multiplets must be addressed separately.

10For a treatment of the Cartan fluxes of SU(NA) see e.g. [12].
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The four-dimensional N = 1 effective action of F-theory compactified on an elliptically

fibered Calabi-Yau fourfold Y4 has been studied via an M-theory lift in [61]. Taking

the detour via M-theory is necessary since there is no twelve-dimensional effective

action for F-theory. Instead one lifts the three-dimensional effective theory obtained by

compactifying M-theory on Y4 by performing an appropriate scaling limit. The basic idea

is to fiberwise apply the duality between M-theory on T 2 and Type IIB string theory on

S1. More precisely, one reduces M-theory on one of the two one-cycles of T 2 to obtain type

IIA string theory with generically varying dilaton. T-duality along the second one-cycle

of T 2 leads to the corresponding Type IIB set-up with varying dilaton. Fibering the T 2

over some base B3 leads to Type IIB string theory on B3 × S1. Due to the T-duality

operation, the S1 is decompactified in the limit where the size R of the original T 2 goes

to zero. Hence, one of the dimensions of Y4 becomes a non-compact space-time dimension

and one obtains a four-dimensional set-up from the M-theory compactification on Y4. This

is known as the F-theory limit.

In case the 7-branes carry non-Abelian gauge-groups GA the fourfold Y4 admits sin-

gularities. In this case one has to resolve the singularities to obtain a smooth Calabi-Yau

fourfold Ŷ4 in order to define the topological data such as intersection numbers and Chern

classes. In performing the resolution one introduces two-forms

wiA ∈ H2(Ŷ4, Z) , i = 1, . . . , rank(GA) , A = 1, . . . , n7 , (3.2)

where A labels one of the n7 7-brane stacks under consideration. In general, the resolution

of singularities is a hard task. However, a well-known and large class of examples is

provided by studying hypersurfaces or complete intersections in a toric ambient space. In

these cases the resolution can be performed explicitly, and cohomologically non-trivial wiA

are constructed [14–19].

Let us briefly recall how the two-forms wiA appear in the dimensional reduction of

M-theory to three space-time dimensions. Note that the wiA are not the only elements in

H2(Ŷ4, Z). In addition one finds h1,1(B3) + 1 elements which arise as follows. There is one

two-form ω0 with indices along the elliptic fiber which is Poincaré dual to the base B3. In

addition there are h1,1(B3) two-forms ωα which are Poincaré dual to non-trivial divisors

Dα = π−1(Db
α), where Db

α is a divisor of B and π : Y4 → B is the projection to the base as

introduced in (3.1). For simplicity, let us not perform a general dimensional reduction and

assume that there are no massless fields arising from the reduction in three-forms on Ŷ4

by considering examples with h2,1(Ŷ4) = 0, i.e. with a trivial third cohomology H2,1(Ŷ4).
11

More precisely, we consider the expansion

C3 = A0 ∧ ω0 + Aα ∧ ωα + AiA ∧ wi A , (3.3)

where (A0, Aα, AiA) are vectors in three dimensions. Clearly, in a three-dimensional effec-

tive theory with N = 2 supersymmetry corresponding to N = 1 in four dimensions the

11For a non-trivial H2,1(Ŷ4), one finds h2,1(B3) vector fields in the F-theory lift, and h2,1(Ŷ4) − h2,1(B3)

complex scalars in the F-theory lift. The h2,1(B3) vectors are R-R bulk U(1) gauge fields in F-theory.
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vectors (A0, Aα, AiA) are accompanied by real scalars (v0, vα, viA) in their supermultiplets.

These scalars arise in the expansion of the Kähler form J on Ŷ4 as

J = v0ω0 + vαωα + vi Awi A . (3.4)

In the F-theory lift the three-dimensional vector multiplets (A0, v0), (Aα, vα) and (AiA, viA)

are identified as follows [61]:

• Geometry: (A0, v0) will become part of the four-dimensional space-time metric. The

circumference r of the fourth dimension is related to v0 as

R ≡ v0

V =
1

r2
, (3.5)

where V is the volume of the Calabi-Yau fourfold Ŷ4. r becomes infinite in the F-

theory limit R → 0. The vector A0 is the off-diagonal component of the metric in

the compact fourth direction.

• Chiral Multiplets: (Aα, vα) become four-dimensional chiral multiplets, the complex-

ified Kähler moduli Tα of the base B3. In the F-theory limit finite volumes are

parametrized by the combination

Lα ≡ vα

V . (3.6)

• Vector Multiplets: (AiA, viA) become four-dimensional vectors, corresponding to the

Cartan U(1) gauge bosons of the 7-branes. Note that for an ADE gauge group GA

there are rank(GA) such U(1) gauge bosons. The relevant field in the F-theory limit

is

ξiA ≡ viA

V =
ζiA

r2
, (3.7)

where ζiA is the actual fourth component of the four-dimensional Cartan U(1) gauge

bosons.

The F-theory limit is defined by setting the background values around which the

fields R,Lα and ξiA have to be expanded. While Lα are finite in the F-theory limit and

parameterize the volumes in the base B3, the fields R, ξiA go to zero in the vacuum. We

assign the scaling behavior

R ∝ ǫ3/2 , ξiA ∝ ǫ2 , (3.8)

to perform this limit ǫ → 0. This allows to distinguish terms which have to be kept from

those which are dropped in the F-theory limit decompactifying to four dimensions [61].

Let us stress that in M-theory all fields are physical, and the fluctuations of the scalars

R, ξiA around the discussed limit have to be kept in the spectrum to perform the three- to

four-dimensional lift.

The vector multiplets (AiA, viA) only capture the degrees of freedom in the Cartan

subalgebras of GA. Suppose the elliptic fourfold Y4 acquires a singularity of type GA over
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the divisor Db
A in the base B3. The pullback of Db

A to the resolved space Ŷ4 will be denoted

as DA = π−1(Db
A) with associated class

[DA] = Cα
A ωα. (3.9)

Then the group theory of GA along DA is encoded in the intersection numbers
∫

Ŷ4

ωα ∧ ωβ ∧ wiA ∧ wjB = −δAB CB
ij C

γ
A

∫

B3

ωα ∧ ωβ ∧ ωγ . (3.10)

Here CA
ij is the Cartan matrix of the gauge group GA. To fully enhance the gauge group to

GA one has to also include M2-branes becoming massless in the blow-down limit Ŷ4 → Y4.

Following the classification above, the number of massless Abelian gauge factors present

on the original, singular fourfold Y4 with non-Abelian gauge groups
∏

A GA is given by

nU(1) =

(

h1,1(Ŷ4) − h1,1(B3) − 1 −
∑

A

rank(GA)

)

+ h2,1(B3) , (3.11)

where the expression in the brackets counts the number of U(1) factors on the non-Abelian

7-branes. One additionally has h2,1(B3) vectors corresponding to the expansion of the R-R

four-form C4.

3.2 Non-harmonic forms for massive U(1)s

In the previous section we described U(1)s that are the Cartan elements of the non-Abelian

gauge groups present in F-theory compactifications. These do therefore not account for

the additional U(1)s present in type IIB orientifolds as the diagonal Abelian factor in the

U(N) gauge group of a stack of N D7-branes. In this section we will introduce a new class

of F-theory U(1) gauge fields which we claim correspond to the uplift of the additional IIB

U(1)s. The key idea we wish to implement was presented originally in [23]. We start by

recalling this proposal and then elucidate and expand on it.

As reviewed in section 2, in type IIB orientifolds if a brane stack and its orientifold im-

age are not cohomologous the diagonal U(1) factor becomes massive through a Stückelberg

mechanism. Such a mass is geometric in nature in that its presence is independent of any

fluxes. Therefore we expect that its mass in F-theory must also be geometric even in the

absence of flux. There is a well-known geometric mechanism to give masses to scalar mod-

uli and closed-string gauge fields in type IIB supergravities by allowing for non-harmonic

forms in the dimensional reduction [70]. In [23] it was suggested that a similar mechanism

is at work for open-string gauge fields. Here the non-harmonic structure is not associated

just to the base manifold but also to the elliptic fibration.

As is evident from the scaling of the mass formula for the U(1)s massive through the

gauging (2.18) in Type IIB, the mass of these U(1)s is at the Kaluza-Klein scale in F-

theory. In other words there is no parametric separation between the U(1) mass and the

other Kaluza-Klein modes. However, as we will show below, it is still possible to make the

massive U(1) visible by including certain non-harmonic forms in the dimensional reduction.

These non-harmonic forms are present already in the Calabi-Yau fourfold Ŷ4. In the three-

dimensional M-theory reduction on Ŷ4, the massive U(1)s derive from the fluctuations of C3
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and the Kähler form J associated with the non-harmonic forms; however, once we include

these modes into the effective action, consistency of the supergravity action requires that

we consider also the possibility of non-zero VEVs of these modes. Such VEVs deform the

Calabi-Yau Ŷ4 into a non-Kähler manifold Ẑ4. The supergravity reduction is thus really

carried out on a non-Kähler space Ẑ4, even though the F-theory vacuum corresponds to

vanishing VEVs of the deformations and is thus defined in terms of the Calabi-Yau Ŷ4 (or

rather its singular blow-down Y4).

With this understanding, it is important to specify precisely the geometries Ẑ4 which

induce the correct gauging in the F-theory effective action context. The manifold Ẑ4 has

the same base B3 as the resolved Calabi-Yau fourfold Ŷ4, and all modifications take place

in the resolution of the fibration. More precisely, Ẑ4 is obtained as a non-Kähler resolution

replacing12

Ŷ4 → Ẑ4 . (3.12)

The mass terms for the scalars parameterizing this deviation from the Calabi-Yau constraint

depend on the geometric data of the resolved fourfold Ẑ4. Due to the modifications in the

elliptic fibration they involve the dilaton in accord with the Type IIB orientifold masses.

Specifying our treatment of the geometrically massive U(1)s and the associated su-

pergravity gauging requires specifying the non-harmonic forms referred to above: A set

of non-closed two-forms {w0A} is required to describe the massive U(1)A potentials in the

M-theory reduction of C3 on Ẑ4. Being non-closed these come with a set of three-forms

{αa, β
a} which intersect in a manner reminiscent of the symplectic structure on H3(X3)

of a Calabi-Yau threefold. Consistency in turn implies the existence also of a set of dual

four-forms {w̃aA, w̃aA}. The latter play a role in the F-theory description of some of the

gauge fluxes known to be present in a perturbative limit. We now collect these forms and

their intersections and then proceed to a justification of the intersection pattern.

We start with the structure required to describe the massive U(1) bosons, i.e. a set of

three-forms {αa, β
a}, two-forms {w0A}, and four-forms w̃bA satisfying

dw0A = NA Ca
A αa , dβa = −δac 1

2
Kαcb NA Cα

A w̃bA . (3.13)

In these expressions we have introduced the constant matrices Ca
A and Cα

A which for now

are arbitrary but will be shown later to correspond precisely to the wrapping numbers (2.5)

of the D7-brane in the IIB limit. The integers NA = rkGA are determined by the rank of

the gauge group along the singularity, which we take to be SU(NA) in order to study the

type IIB limit. Dimensional reduction on Ẑ4 including the 2-forms w0A leads to additional

three-dimensional vector and scalar modes which are identified in the F-theory uplift with

the gauge fields rendered massive in Type IIB by the Stückelberg mechanism. The index

0 denotes that they are not in the Cartan resolution tree of the non-Abelian singularity

associated to an index A.13

12The explicit construction of Ẑ4 should be the higher-dimensional generalization of the non-Kähler

threefolds considered in [71].
13The index A need not be associated to a non-Abelian singularity but can also stand by itself corre-

sponding to a single brane.
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The intersection numbers Kαab appearing in (3.13) are defined by evaluating the inte-

grals
∫

Ẑ4
ωα ∧ M ∧ N , with M,N ∈ {αa, β

b}. Here and in the sequel we write all integrals

in terms of the non-Kähler space Ẑ4; however, since the non-harmonic forms are present

already on Ŷ4, we could just as well evaluate these intersections on the Calabi-Yau Ŷ4,

finding identical expressions. Due to the elliptic fibration structure of Ẑ4 the {αa, β
a} can

be chosen to obey

∫

Ẑ4

ωα ∧αa ∧αb = 0 ,

∫

Ẑ4

ωα ∧αa ∧ βb =
1

2
Kαacδ

cb ,

∫

Ẑ4

ωα ∧ βa ∧ βb = 0 , (3.14)

as well as
∫

Ẑ4

η ∧ αa ∧ αb =

∫

Ẑ4

η ∧ αa ∧ βb =

∫

Ẑ4

η ∧ βa ∧ βb = 0 , with η = w0A, ω0 . (3.15)

Here ωα are the basis elements in H2(Ẑ4, R) which are obtained by pullback from the base

B3. Note that due to the factor 1
2 the Kαac in (3.14) are even and as we will see they corre-

spond to the intersection numbers (2.2) defined on the double cover. The rationale behind

this pattern is that (αa, β
b) arise as the wedge product of 1-forms (dx, dy) in the elliptic

fiber and 2-forms in the base which pick up a minus sign under SL(2, Z) monodromies as-

sociated with the part of the discriminant locus that corresponds, in the Type IIB limit, to

the orientifold plane. The set of forms (αa, β
b) therefore inherits the symplectic structure

of the 1-forms (dx, dy) in the fiber. Compatibility with (3.13) implies that one also has to

demand

Cα
AKαab

∫

ωβ ∧ w0B ∧ w̃bA = δA
BKβabC

b
A , Cα

CKαab

∫

w0A ∧ w0B ∧ w̃bC = 0 . (3.16)

We next turn to the four-forms required to include some of the gauge fluxes present

in the perturbative Type IIB limit. To implement these fluxes into F-theory we will need

to introduce a set of four-forms w̃aA. These are defined as the duals of the four-forms w̃aA

introduced in (3.13) so that

∫

Ẑ4

w̃aA ∧ w̃bB = δB
A δb

a, (3.17)

∫

Ẑ4

w̃aA ∧ w̃bB = −1

2
δABKαabNACα

A.

The precise form of the intersection numbers in the second line of eq (3.17) is dictated

by the M2/D3-brane tadpole correspondence, as will be shown later. The new four-forms

satisfy the differential relations

dw̃aA = NACα
Aωα ∧ αa . (3.18)

Again we can use partial integration and show the consistency of (3.17) with (3.13)

and (3.14).

To complete the data required in a Kaluza-Klein reduction let us also give the remaining

intersection numbers involving the non-closed forms. These can be deduced by requiring
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consistency with the Type IIB orientifold limit. The forms w0A combine with the resolution

forms wiA introduced in (3.2) into the set

wIA , I = 0, i, i = 1, . . . , rank(GA) , A = 1, . . . , n7 , (3.19)

where n7 is the number of 7-brane stacks. Together they obey the intersection relations

∫

Ẑ4

wIA ∧ wJB ∧ ωα ∧ ωβ = −1

2
δAB CB

IJ C
γ
A Kαβγ , (3.20)

where we are using the intersection numbers

1

2
Kαβγ =

∫

B3

ωα ∧ ωβ ∧ ωγ =

∫

Ẑ4

ω0 ∧ ωα ∧ ωβ ∧ ωγ . (3.21)

Furthermore CA
IJ reduces to the Cartan matrix upon restriction of the indices to the Cartan

algebra and CA
0i = 0, CA

00 = NA. Note that (3.21) coincides with the definition of the

intersection numbers given in (2.2) due to the fact that
∫

X3
ωα∧ωβ∧ωγ = 2

∫

B3
ωα∧ωβ∧ωγ .

Finally,

∫

Ẑ4

w̃aA ∧ w0B ∧ ωα = −1

2
δABKαabNACb

A . (3.22)

Let us reiterate that all intersection numbers defined here are integer-valued. The fac-

tors of 1
2 are chosen to allow the identification of Kαab with the even-valued intersection

numbers (2.2) on the double cover.

Having specified a basis for the dimensional reduction we can summarize the new fields

completing the spectrum discussed in section 3.1. Again, for simplicity, we will restrict to

examples with h(2,1)(B3) = 0 since the resulting bulk U(1)s do not play a role in the

forthcoming discussion. More precisely, we consider the expansion

C3 = A0 ∧ ω0 + Aα ∧ ωα + AIA ∧ wIA + caαa + baβ
a (3.23)

where (A0, Aα, AI A) are vectors and ca, ba are real scalars in three dimensions. As in

the previous section the vectors (A0, Aα, AIA) combine with real scalars (v0, vα, vIA) and

fermions into supermultiplets. Hence one needs to identify the geometric origin of the real

scalars v0A. Note that due to supersymmetry both the vector and scalar fluctuations A0A,

v0A have to appear in the reduction. As we will argue momentarily the scalar fluctuation

can be interpreted formally as a fluctuation into a non-Kähler space Ẑ4.

As is well-known from the literature on compactifications on non-Calabi-Yau manifolds

(see e.g. [72] for a review), the condition on the existence of a supersymmetric effective

theory is weaker than the condition to be in a supersymmetric vacuum. As in the threefold

case the existence of a supersymmetric effective theory is expected if Ẑ4 admits a globally

defined (1, 1)-form J .14 Also the scalars v0A arise in the expansion of J as

J = v0ω0 + vαωα + vIAwIA . (3.24)

14We will not change the complex structure part of our geometry when going from Ŷ4 to Ẑ4.
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Note that in general J is not a Kähler form since it is non-closed

dJ = v0ANACa
Aαa . (3.25)

It is well known that the supersymmetry conditions imply dJ = 0 in the vacuum [73] and

hence require
〈

v0A
〉

Ca
A = 0 . (3.26)

Therefore, while the vacuum configuration is a Kähler manifold, the geometric origin of

the vector multiplet (A0A, v0A) can be matched to (massive) resolutions of this manifold

which take it away from Kählerness.

Indeed from the perspective of the F-theory dual, as shown in section 4.1, the vIA form

a component of the four-dimensional vectors and so must have vanishing VEV by Lorentz

invariance. The scaling in the F-theory limit is analogous to the one of the Cartan U(1)’s

given in (3.8), i.e.

ξ0A ≡ v0A

V ∝ ǫ2 , (3.27)

where the ǫ → 0 limit yields a hierarchy among the terms in the F-theory limit. However, it

will be crucial to keep the fluctuations v0A and A0A in the spectrum of the effective theory.

In the later sections we will argue that the F-theory lift of the three-dimensional vector

multiplets (v0A, A0A) yields the massive U(1)s encountered in the orientifold picture.15

So far we have simply given the details of our proposal for implementing the massive

U(1)s. The fact that the U(1)s arise from forms that are not harmonic (if the Ca
A are

non-zero) means that they are not massless. We present much more non-trivial checks of

the proposal by studying the IIB limit in sections 3.3 and 4.

It is worth noting that our proposal differs slightly in its implementation of the differ-

ential structure from similar setups such as presented in [70, 74, 75]. Once the first relation

in (3.13) is introduced the natural complement relation involves a set of non-closed 5-forms

rather than the 3-forms we have introduced. More precisely we can define the set

dw
(2)
0A = α

(3)
A , dβ(5)A = w̃(6)0A , (3.28)

such that ∫

Ẑ4

w
(2)
0A ∧ w̃(6)0B = −

∫

Ẑ4

α
(3)
A ∧ β(5)B = δB

A . (3.29)

Indeed such a structure is present in our setup as discussed in section 5. Then, as usually

happens, the first part of (3.28) would correspond to reducing the electric field, in our case

C3, while the second part would encode the same physics but in the magnetic frame which

in our case corresponds to reducing C6. We only need to keep one of these descriptions

which in our case is the electric one. Our implementation of the structure (3.28) in (3.13)

amounts to expanding the non-closed 5-forms as a product of harmonic base 2-forms ωα and

non-closed 3-forms βa which have a leg in the fiber. The non-closedness of the 3-forms is

then inherited from that of the 5-forms. However the 3-forms βa are not the magnetic duals

of the αa in the sense of Hodge duality as the 5-forms were. Therefore they correspond

15More precisely, they correspond to 2πα′AA
(IIB) in the orientifold limit.
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to independent physics degrees of freedom and even in the electric frame we should still

reduce C3 on them as we do.16

For later use we note that in accord with supersymmetry in the three-dimensional

theory one expects that the (ca, ba) combine into complex scalars as

Na = ca − ifab ba . (3.30)

In the Calabi-Yau case, the complex structure for this combination is naturally induced by

the complex structure of X̂4. Formally generalizing this to the space Ẑ4 one obtains the

Na from reducing C3 on complex (2, 1)-forms Ψa given by

Ψa = i
2Refab(β

b − if̄ bcαc) , Ψa + Ψ̄a = αa . (3.31)

The coefficient function fab has to be chosen such that Ψa are (2, 1)-forms, and hence

is a complex function fab of the complex structure moduli of Ẑ4. Here we denoted by

Refab ≡ (Refab)−1 the inverse of the real part of fab. Note that for harmonic forms

Ψa one can show that fab can be chosen to be holomorphic in the complex structure

deformations [61]. We expect that it is possible to extend this structure to the forms Ψa

defined in (3.31).

3.3 Abelian G4 fluxes and their induced D5- and D3-tadpole

In this section we begin to justify our framework for a description of massive U(1) symme-

tries in terms of the non-harmonic forms introduced in the previous section. Our first goal

is to analyse the associated gauge fluxes and show their consistency with known results in

the Type IIB limit. Apart from serving as an important check of our framework this leads

us to a proposal for the F-theory uplift of chirality inducing gauge fluxes from Type IIB,

which sheds more light on the nature of gauge fluxes in terms of the M-theory G4 flux.

In M/F-theory gauge flux is encoded in suitable components of four-form flux G4.

Instead of presenting our proposal right away we begin with some heuristics: As reviewed

in section 2, in the Type IIB limit the gauge fluxes descending from the ambient space can

be expanded into flux quanta F̃A,α
I along elements of H

1,1
+ (X3) and F̃A,a

I along elements of

H
1,1
− (X3). The two-forms in H

1,1
+ (X3) uplift to two-forms on the base, i.e. to the elements

ωα. In fact, independently of any Type IIB considerations, it is well-known that the Cartan

fluxes in F-theory take the simple form G4 = −∑i F̃
A,α
i ωα∧wiA with wiA given in eq. (3.2).

This includes the uplift of orientifold even Cartan fluxes descending form the ambient space.

A natural guess is to extend this to the diagonal U(1) flux by writing G4 = −F̃A,α
0 ωα∧w0A

for the non-harmonic two-form w0A introduced in (3.13) (cf. also (3.19)), and we will verify

the validity of this ansatz momentarily. On the other hand, not all fluxes must be given by

four-forms expressible as the wedge product of two two-forms. In particular this turns out

to be the case for the uplift of the orientifold odd fluxes F̃A,a
I associated with the diagonal

U(1). Heuristically, this can be seen by noting that the negative 2-forms lift to 3-forms in

F-theory, as will be recalled in more detail below. The non-harmonic three-forms {αa, βa}
appearing, according to eq. (3.13), in the context of the massive U(1) in turn are related to

16Of course the βa are magnetic duals to the αa but in the sense of the SL(2, Z) action.
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the set of non-harmonic four-forms {w̃aA, w̃aA} of (3.17). We will find that the w̃aA indeed

have the right properties to describe such fluxes.

Altogether these considerations result in the following proposal for the form of the

gauge fluxes associated with the massive U(1)s in F-theory,

G4 = −F̃A,α
0 ωα ∧ w0A − F̃A,a

0 w̃aA. (3.32)

An important check of any ansatz for the G4-form gauge flux is to compare its induced

tadpoles with the well-known induced D5- and D3-tadpoles in the Type IIB limit. Let us

first consider uplifting the flux-induced D5-tadpole (2.30) to F-theory. The uplift of the

closed-string field-strengths locally takes the form of

F3 ∧ dy → G4 , H3 ∧ dx → G4 , (3.33)

where the respective one-forms dx and dy correspond to the A- and B-cycle of the generic

non-singular elliptic fiber. Both of these are odd under the orientifold monodromy, which

means we can consider uplifting the odd two-forms ωa to some ’even’ three-forms by fibering

them in a similar way

ωa ∧ dy → αa , ωa ∧ dx → βa . (3.34)

The fact that such a fibration leads to globally well-defined forms can be deduced by

considering the four-dimensional supergravities: the axions resulting from reducing C3 on

αa and βa are the uplifts of the axions coming from reducing C2 and B2 on the ωa (see

section 4 for much more detail).

We can use these relations to uplift the D5-tadpole constraint to a constraint on G4-

flux. Note however that it is dangerous to directly use (3.34) to compare the coefficients in

a form expansion, due to the difference in the intersection forms of B3 and X3. However,

the integrated tadpole constraints are uplifted as
∫

X3

dF3 ∧ ωb →
∫

Ŷ4

dG4 ∧ βb. (3.35)

In accord with our remarks before (3.14) we evaluate the integral right away on the

Calabi-Yau resolution Ŷ4 (as opposed to the non-Kähler space Ẑ4) describing the

F/M-theory vacuum.

It is now evident that the gauge flux G4 for the diagonal U(1) flux must indeed be

associated with non-harmonic forms, for which the above expression is non-zero. In fact,

using the non-closedness of w0A and w̃aA as given in (3.13) and (3.18) one evaluates

dG4 = −NA

(

F̃A,a
0 Cα

A + F̃A,α
0 Ca

A

)

ωα ∧ αa . (3.36)

This can be integrated to a global tadpole constraint

δab

∫

Ŷ4

dG4 ∧ βb = −1

2
NA

(

F̃A,c
0 Cα

A + F̃A,α
0 Cc

A

)

Kαac = 0 , (3.37)

in perfect agreement with the Type IIB result (2.31). Hence such flux arises from expanding

G4 in two-forms ω0A and four-forms w̃aA which are not closed, precisely matching our
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claim. Indeed the fact that the wrapping numbers are the coefficients which control the

non-closedness is exactly recreated in section 4 from the gauged supergravity analysis.

Similarly we can match the D3-brane charge induced by diagonal U(1) gauge flux in

type IIB orientifold and in F-theory. The expression (2.33) is to be compared with the

flux contribution 1
2

∫

Ŷ4
G4 ∧ G4 appearing in the F/M-theory D3/M2-brane cancellation

condition

NM2 +
1

2

∫

Ŷ4

G4 ∧ G4 =
χ(Ŷ4)

24
. (3.38)

Evaluating this quantity for G4-form flux of the type (3.32) requires the intersection

forms (3.20), (3.17), and (3.22). The result is

1
2

∫

Ŷ4

G4 ∧ G4 = −1
4

∑

A

NA

(

KαβγCα
AF̃A,β

0 F̃A,γ
0 + KαbcC

α
AF̃A,b

0 F̃A,c
0 + 2KabγCa

AF̃A,b
0 F̃A,γ

0

)

and perfectly matches the Type IIB expression (2.33). In particular, this provides evidence

for the intersection numbers (3.17).

Before we proceed a comment on the quantisation of the non-harmonic fluxes is in

order. As is well-known, harmonic G4-fluxes on a Calabi-Yau fourfold are subject to

Witten’s quantisation condition [76]

G̃4 = G4 −
1

4
p1(Ŷ4) ∈ H4(Ŷ4, Z) , (3.39)

where p1(Ŷ4) is the first Pontryagin class of Ŷ4 which obeys p1(Ŷ4) = −2c2(Ŷ4) for a

Calabi-Yau fourfold. This to be read as an equation in cohomology, or, equivalently, as the

constraint that the integral of the left-hand side over an integral basis Ak of four-cycles be

integer-valued
∫

Ak

G̃4 =

∫

Ŷ4

G̃4 ∧ [Ak] ∈ Z , Ak ∈ H4(Ŷ4, Z) , (3.40)

where [Ak] is the Poincaré dual class of Ak. Eq. (3.39) is the analogue of the Freed-

Witten quantisation condition [64] for brane fluxes in Type II theories (see [77] for a

recent analysis).

Note that the condition (3.39) cannot simply be generalized to the non-harmonic

fluxes (3.32), since the non-closed expansion forms ωα ∧ w0A and w̃aA are not elements

inside the cohomology classes. This cannot mean, though, that the non-harmonic fluxes

are not subject to any quantisation condition. This is clear e.g. by considering the uplift

of U(1) fluxes of concrete Type IIB models along the lines and extending the analysis

of [78–80]. In F-theory models with a given Type IIB limit the quantization of the fluxes

can of course be inferred from the perturbative Freed-Witten condition. A natural gener-

alization of (3.40) therefore is likely to involve a replacement of [Ak] with a relative form

in H4(Ŷ4,DA, Z) with integral coefficients. Such relative forms also can contain 4-forms

which are exact on Ŷ4 but have non-vanishing integral with a non-closed G̃4. To make

this more precise it will be crucial to specify the geometric part in G̃4, the first Pontryagin
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class, which is likely replaced by p1(Ẑ4) on the non-Kähler space. A detailed specification

of the quantisation condition directly in the language of the four-fold is however beyond

the scope of this article and left for future studies.

3.4 The induced chirality

One of the most important consequences of switching on gauge flux along the massive U(1)

symmetries is that the flux induces non-zero chirality in the massless spectrum of charged

matter states. Such matter arises either as bulk matter propagating along the full divisor

Db
A in the base or as localised matter at the intersection curve of two 7-branes. One of the

strongest pieces of evidence why it is important to allow for gauge flux in the massive U(1)

is that the resulting chiral index in Type IIB orientifolds is protected as we take the F-

theory uplift. Indeed in Type IIB orientifolds, simple formulae for the chiral index of such

massless matter in presence of gauge flux exist. In this section we make a proposal for the

corresponding chirality formulae for the new type of F-theory fluxes, which precisely match

the Type IIB results provided we accept the intersection numbers introduced in section 3.2.

At the intersection of two brane stacks A and B with (massive) Abelian symmetries

U(1)A and U(1)B massless matter arises with relative Abelian charges (1A,−1B) + c.c or

(1A, 1B)+c.c. For later convenience we call matter curves of the first type CAB and matter

curves of the second type CAB′ .17 While the overall normalisation of the charges is of

course conventional, the relative charges must be assigned such as to correctly reproduce

the pattern of Yukawa couplings at codimension-3 singularity enhancements. This is a

global feature of the geometry sensitive to the relative orientation of the branes at the two

types of intersection loci.

It turns out that the chiral index for both situations can be consistently formulated in

terms of the four-forms w̃aA introduced in section 3.2 and the two combinations

[D̃A] = [DA] −
rk(GA)
∑

i=0

aiA wiA, [D̃A′ ] = [DA] −
rk(GA)
∑

i=0

aiA′ wiA. (3.41)

Here aiA = aiA′ , i = 1, . . . , rk(G), denote the Dynkin labels of the Dynkin diagram of gauge

group GA and a0A = 1
NA

= −a0A′ multiplies the non-harmonic 2-forms w0A introduced

previously. For comparison with Type IIB we take GA = SU(NA) with aiA = 1. The

expression [DA] denotes the 2-form dual to the pullback of the base divisor Db
A as given

in (3.9). The relative sign between a0A and a0A′ sets the normalisation of the U(1)A charges.

In this subsection we concentrate on the contribution to the chirality of the fluxes

along the diagonal U(1), which as we have seen are associated to the non-harmonic forms

w0A, w̃aA. Our aim is to write a formula in terms of the geometric M-theory quantities

that reproduces the correct type IIB chirality formula. The claim is then that the chirality

IAB along matter locus CAB of a pair of branes DA and DB is given by the expression

IAB =
1

4

∫

Ẑ4

(

([D̃A] ∧ [D̃B′ ]−[D̃A′ ] ∧ [D̃B ]) + Kαab(C
α
ACa

Bw̃bA − Cα
BCa

Aw̃bB)
)

∧ G4. (3.42)

17This is well familiar from experience with Type IIB orientifolds. If one uses the convention that the

relative charge normalisation (1A,−1B) + c.c occurs at the intersection of brane A and B, then the second

type of matter is localised at intersections of brane A with the orientifold image B′.
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Note the appearance of the objects [D̃A′ ], [D̃B′ ]. On the other hand, the quantity IAB′

counting chiral matter along CAB′ is given by

IAB′ =
1

4

∫

Ẑ4

(

([D̃A] ∧ [D̃B ]−[D̃A′ ] ∧ [D̃B′ ]) −Kαab(C
α
ACa

Bw̃bA + Cα
BCa

Aw̃bB)
)

∧ G4. (3.43)

We can evaluate the integrals appearing in these expressions using the formu-

lae (3.20), (3.22) and (3.16). With these relations one finds after inserting G4 given in (3.32)

and neglecting Cartan fluxes

IAB = −1

4

(

KαβγC
β
AC

γ
B + KαabC

a
ACb

B

)(

F̃A,α
0 − F̃B,α

0

)

(3.44)

−1

4

(

KαabC
α
ACa

B + KαabC
a
ACα

B

)(

F̃A,b
0 − F̃B,b

0

)

. (3.45)

Similarly

IAB′ = −1

4

(

KαβγC
β
AC

γ
B −KαabC

a
ACb

B

)(

F̃A,α
0 + F̃B,α

0

)

(3.46)

−1

4

(

KαabC
α
BCa

A −KαabC
a
BCα

A

)(

F̃A,b
0 − F̃B,b

0

)

. (3.47)

This precisely matches the results one obtains from the corresponding type IIB expressions,

where the chirality indices are given by18

IAB = −
∫

X3

[DA] ∧ [DB ] ∧ (F̃A
0 − F̃B

0 ) , (3.48)

IAB′ = −
∫

X3

[DA] ∧ [D′
B ] ∧ (F̃A

0 + σ∗F̃B
0 ) . (3.49)

Even though we are focusing in this paper on fluxes associated with massive U(1)s

the above chirality formula is expected to generalise, mutatis mutandis, also to the case

of massless U(1)s. A global prescription for their understanding was given in the U(1)

restricted Tate model of [23] and it will be interesting to apply the above reasoning to

constructions of this type.

4 The M- and F-theory supergravity effective action

In this section we derive the effective four-dimensional supergravity resulting from com-

pactifications of F-theory on CY fourfolds including the non-Kähler deformations that arise

from the non-closed forms introduced in section 3. We do this by studying the reduction

of M-theory to three dimensions in subsection 4.1, and then considering the F-theory limit

in subsection 4.2. This will lead us to a rather complete picture of the effective N = 1

supergravity theories which describe an F-theory compactification including massive U(1)’s

arising from fluxed and geometric gaugings. Furthermore we are able to check that the

resulting supergravity matches what we expect from the type IIB setting thereby providing

further evidence towards the validity of our constructions.

18See appendix A for more details regarding the IIB chirality.
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4.1 On the M-theory reduction on non-Kähler fourfolds

It is not hard to show that the vectors (v0A, A0A) are indeed gauging scalar fields and can

become massive by ‘eating’ these scalars. To see that we compute the field strength of the

reduction of C3. With the help of (3.13) one finds

F4 = FΛ ∧ ωΛ + ∇ca ∧ αa + dba ∧ βa + ba dβa , (4.1)

where we introduced the abbreviation ωΛ = (ω0, ωα,wIA), and similarly the field-strengths

FΛ. In particular we see that the scalars ca appear with a covariant derivative given by

∇ca = dca − NACa
AA0A . (4.2)

This structure is of course very reminiscent of what we found in (2.18) in the context of

the geometric Stückelberg mechanism for D7-branes in Type IIB language. The would-be

shift symmetry of the scalars ca is gauged by the gauge potentials A0A.

Clearly, the covariant derivative (4.2) forces the complex scalars Na defined in (3.30)

to be gauged via the covariant derivative

∇Na = dNa − NACa
AA0A . (4.3)

In this section we develop the 3D N = 2 supergravity that we should match the M-

theory reduction to. In [81] the action is given for the case where either all the fields are

scalars and some are gauged or where all the gauged fields are dualised to vectors. For the

M-theory reduction we require an action where some of the gauged scalars are dualised to

vectors while some gauged scalars are left as scalars. We perform the explicit dualization

in appendix B and only display the result here. Let us consider chiral multiplets M I ,19

and vector multiplets (ξΛ, AΛ). We denote the field strength of AΛ by FΛ. Any three-

dimensional gauged N = 2 supergravity with this field content can then be cast into the

form

S(3)
N=2 =

∫

[

− 1
2R3 ∗ 1 − K̃IJ̄ ∇M I ∧ ∗∇M̄J + 1

4K̃ΛΣ dξΛ ∧ ∗dξΣ (4.4)

+ 1
4K̃ΛΣ FΛ ∧ ∗FΣ + FΛ ∧ Im(K̃ΛI ∇M I) + 1

2ΘΛΣAΛ ∧ FΣ − (VT + VF) ∗ 1
]

,

with covariant derivatives

∇M I = dM I + XI
Λ AΛ . (4.5)

The scalar potential in the action (4.4) is given by

VT = K̃IJ̄TITJ̄ − K̃ΛΣTΛTΣ − T 2, (4.6)

VF = eK(K̃IJ̄DIWDJW − (4 + ξΣξΛK̃ΣΛ)|W |2) ,

where TI =∂MIT , TΛ =∂ξΛT , and K̃ΛΣ and K̃IJ̄ are the inverses of K̃ΛΣ, K̃IJ̄ , respectively.

19The index I labeling these chiral fields is not related to the index enumerating the two-forms wIA. We

trust that the appropriate range for the index I will always be clear from the context.
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The three-dimensional action is thus specified by a kinetic potential K̃(M,M̄ |ξ), which

depends on the complex scalars M I and the real scalars ξΛ in the vector multiplets. K̃

determines the kinetic terms as

K̃IJ̄ = ∂MI∂M̄J K̃ , K̃IΛ = ∂MI∂ξΛK̃ , K̃ΛΣ = ∂ξΛ∂ξΣK̃ , (4.7)

and the Kähler covariant derivative DIW = ∂MI W + (∂MI K̃)W . Furthermore one has to

specify the constant ‘embedding tensor’ ΘΛΣ, the Killing vectors XJ
Λ in (4.5), as well as

the function T (M,M̄, ξ). To determine the function T one first has to evaluate

i∂MI DΣ = K̃IJ̄X J̄
Σ , (4.8)

just as in the four-dimensional theory (2.23). The resulting potentials DΣ appear in T as

T = −1
2ξΣΘΛΣξΛ + ξΣDΣ . (4.9)

Using (4.8) one readily evaluates for constant Killing vectors

VT = − (K̃IJ̄ − K̃ΓIK̃
Γ∆K̃∆J̄)XI

ΣX J̄
ΛξΣξΛ − K̃ΛΣDΛDΣ (4.10)

−ΘΣΓK̃Γ∆Θ∆ΛξΣξΛ + 2K̃ΛΣDΛΘΣΓξΓ + 2iK̃ΛΣK̃ΛIX
I
∆ΘΣΓξ∆ξΓ

− 2iK̃ΛΣK̃ΛIX
I
∆DΣξ∆ − T 2 .

Note that starting with the action (4.4) one can also dualize the vector multiplets

(AΣ, ξΣ) into complex scalars tΣ. In order to determine the Kähler potential K for all

scalars tΣ,M I one applies a Legendre transform

Re tΣ = ∂ξΣK̃ , K(t, t̄,M, M̄ ) = K̃ − 1
2 (tΣ + t̄Σ)ξΣ , (4.11)

as discussed in appendix B. Due to the non-trivial ΘΣΛ the dual scalars tΣ are gauged as

∇tΣ = dtΣ − 2iΘΣΛAΛ . (4.12)

This completely specifies the relevant three-dimensional supergravity theory. We now turn

to matching this to the M-theory reduction.

Let us now specify the fields and couplings in the general action (4.4) when we re-

duce M-theory on the non-Kähler space specified in subsection 3.2. One first notes that

the vector multiplets are identified as (ξΛ, AΛ) =
{

(R,A0), (Lα, Aα), (ξIA, AIA)
}

, where

(A0, Aα, AiA) are the vectors appearing in (3.23) and we have to set

R =
v0

V , Lα =
vα

V , ξIA =
vIA

V , (4.13)

with V being the volume of Ẑ4, and (v0, vα, vIA) are the coefficients in (3.24). Furthermore,

we identify the complex scalar fields M I =
{

Na, zK}, where Na was given in (3.30) and

zK are the complex structure deformations of Ŷ4.

The kinetic potential K̃(M,M̄ |ξ) determining the dynamics of the fields (ξΛ, AΛ) and

M I has to be computed by inserting the Kaluza-Klein Ansatz of section 3.2 into the
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the eleven-dimensional supergravity action. This will lead to explicit expressions for the

kinetic term, which can be used to deduce the K̃. Clearly, this is more involved than in

the Calabi-Yau case due to the appearance of the non-closed forms. Compared with the

Calabi-Yau reductions of [82] one expects the replacement of the appropriate intersections

as introduced in section 3.2. Formally this yields the expression

K̃(M,M̄ |ξ) = −3 logV +
i

4
ξΛ(Na − N̄a)(N b − N̄ b)

∫

Ẑ4

ωΛ ∧ Ψa ∧ Ψ̄b̄ + KCS , (4.14)

where the volume V has to be expressed as a function of the (ξΛ, AΛ) = (R,Lα, ξIA) defined

in (4.13), and Ψa are the complex structure depended (2, 1)-forms introduced in (3.31).

The part of the kinetic potential K̃CS = − log
∫

Ω ∧ Ω̄ corresponding to the complex

structure moduli can be obtained from a dimensional reduction of the curvature scalar,

but this will not be needed in this paper. The kinetic potential depends only on the

imaginary parts of the Na consistent with the fact that the real parts enjoy a gauged

shift symmetry according to eq. (4.3). Note that in order to explicitly check (4.14) one

needs to generalize the techniques developed for non-Calabi-Yau threefolds (see [83–86] for

example). In particular, one has to show how the Hodge-star can be evaluated on the

non-harmonic forms introduced in section 3.2. However, crucial for our analysis will be

that the non-harmonic forms induce a scalar potential.

Having determined the kinetic terms in the dimensionally reduced effective action we

turn now to the discussion of the scalar potential. The vector multiplet gauging can be

read off from the Chern-Simons term of 11-dimensional supergravity

S
(11)
CS = − 1

12

∫

C3 ∧ F4 ∧ F4 =

∫

M2,1

Θ(IA)αAIA ∧ Fα +
1

2
ΘαβAα ∧ F β + . . . , (4.15)

where we will focus on the terms with flux dependent constant coefficients Θ(IA)α,Θαβ etc.

Evaluating the internal integral, one finds

Θ(IA)α = −1

2

∫

Ẑ4

wIA ∧ ωα ∧ G4 , (4.16)

where G4 includes the new fluxes introduced in (3.32) in addition to standard harmonic

fluxes. Note that only Θ(0A)α receives a contribution from non-harmonic fluxes due to the

non-closedness of the w0A. Besides, fluxes which lift to F-theory have to obey

Θαβ = −1

2

∫

Ẑ4

ωα ∧ ωβ ∧ G4 = 0 , Θ(IA)(JB) = −1

2

∫

Ẑ4

wIA ∧ wJB ∧ G4 = 0 , (4.17)

and similarly for the other index combinations. It is our working assumption that such

intersection properties can be achieved in the F-theory limit and possibly even in the full

M-theory by a suitable redefinition of the basis of forms or a shift of the fluxes.20 The

non-trivial fluxes thus determine the first term of T given in (4.9) as

T flux = −ξIAΘ(IA)αLα =
1

4V2

∫

Ẑ4

J ∧ J ∧ G4 , (4.18)

20This is indeed possible in a harmonic reduction as discussed in [87].
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where for the last equality we have used (4.17) and (3.24). This formally agrees with the

flux potential found in a harmonic reduction. However, due the non-closed forms in G4

one finds new contributions. Let us denote the part of T flux induced by the new forms in

G4 by T flux
U(1). The first derivative of this potential is used in the scalar potential and can

be evaluated by inserting (3.32) into (4.18) as

Dflux
0A ≡ ∂ξ0AT flux

U(1) = −LαF̃B,β
0

∫

Ẑ4

w0A ∧ ωα ∧ ωβ ∧ w0B (4.19)

−LαF̃B,a
0

∫

Ẑ4

w0A ∧ ωα ∧ w̃aB

=
1

2
KαβγNAC

γ
ALαF̃A,β

0 +
1

2
KαabNACb

ALαF̃A,a
0 ,

where we have used (3.20) and (3.22). In the next subsection we will lift this term to four

space-time dimensions and show that it corresponds to a D-term arising from a gauged

U(1) symmetry.

The gaugings of the chiral multiplets are obtained by comparing the covariant deriva-

tives (4.3) with the general expression (4.5) such that

Xa
0A = −NACa

A = X ā
0A , Xa

α = 0 = Xa
iA, i 6= 0 . (4.20)

Note that these Killing vectors are constant so that one can integrate (4.8) to obtain D0A =

iCa
AK̃N̄a for the only nonzero potential. From the gauged supergravity expression (4.6) we

can read off the resulting scalar potential. Using the general expression (4.9) together

with (4.16), (4.17) and (4.14) one finds

T = −ξiAΘ(iA)αLα + iξ0ANACa
AK̃N̄a (4.21)

=
1

4V2

∫

Ẑ4

J ∧ J ∧ G4 +
1

4V2

∫

Ẑ4

J ∧ J ∧ dC3 ,

where we have used the expression (4.14) for the kinetic potential to determine the first

derivative K̃Na . Let us stress that the scalar potential computed using T directly contains

a mass term for the massive diagonal U(1) in the F-theory limit. This U(1) comes from

the vector multiplet
(

A0A, ξ0A
)

which also contains the scalar ξ0A. As we will see in the

next subsection the second term in (4.21) induces a mass term for ξ0A when inserted into

the scalar potential (4.10).

4.2 The F-theory limit

In the previous section we have studied the three-dimensional effective theory arising in

the reduction of M-theory on a non-Kähler Calabi-Yau fourfold. In a next step we aim to

lift these results to four dimensions and show that they reduce to the orientifold effective

action discussed in section 2 in the weak coupling limit.

To study the F-theory limit we dimensionally reduce a general four-dimensional N = 1

supergravity action involving a set of vectors AIA and chiral scalars Mn = {tα, Na, zK} to

three dimensions and compare it to the action obtained by compactifying M-theory on the
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non-Kähler fourfold Ẑ4. We will focus on the couplings which capture the gaugings of the

shift symmetries. In particular, the gaugings induce covariant derivatives for the gauged

scalars and a D-term potential in the general action (2.15) as

S(4)
gauge =

∫

−Kmn̄∇Mm ∧ ∗4∇M̄ n̄ − 1
2Ref (IA)(JB)D(IA)D(JB) ∗4 1 , (4.22)

where the covariant derivatives ∇Mn = dMn + Xn
IAAIA split as

∇tα = dtα + XαIAAIA , ∇Na = dNa + Xa
IAAIA , ∇zK = dzK . (4.23)

The Killing vectors Xa
IA, XαIA are constant for a gauged shift symmetry.

In the dimensional reduction to d = 3 one splits the four-dimensional metric g
(4)
µν and

its inverse as

g(4)
µν =

(

g
(3)
rs + R−1A0

rA
0
s R−1A0

r

R−1A0
r R−1

)

, g
µν
(4) =

(

grs
(3) −grs

(3)A
0
s

−grs
(3)A

0
s R + grs

(3)A
0
rA

0
s

)

, (4.24)

where R is related to the circumference r of the 4th dimension as in (3.5). Note that

this also allows us to derive the simple split of the determinant det g(4) = r2 · det g(3).

Furthermore, one splits the four-dimensional vectors as

AIA = (AIA
3 − R−1ξIAA0

3, R−1ξIA) , (4.25)

and A0
3 is the vector in the reduction of the four-dimensional metric. The vector A0

3 com-

bines with R into a three-dimensional vector multiplet. The N = 2, d = 3 vector multiplets

then contain the bosonic fields (ξIA, AIA
3 ), and (R,A0

3). Inserting the decomposition (4.25)

into (4.22), and imposing that the Mn = {tα, Na, zK} are independent of the 4th dimension

one finds

S̃(3)
gauge =

∫

−Kmn̄∇Mm ∧ ∗3∇M̄ n̄ − Vgauge ∗3 1 , (4.26)

Vgauge = Kmn̄Xm
IAX n̄

JBξIAξJB +
1

2
R · Ref (IA)(JB)DIADJB ,

with three-dimensional covariant derivatives

∇Mm = dMm + Xm
IAAIA

3 . (4.27)

In this expression we have rescaled the three-dimensional metric as g3 → R−1g3 to bring

the Einstein-Hilbert term into its standard d = 3 form. It is important to remark that

the vector A0 cancels in the gauging (4.27) due to the appearance of A0 in the metric

ansatz (4.24).

The action can be rewritten in the standard three-dimensional form of (4.4). The

kinetic terms of the vectors (ξIA, AIA
3 ) and the scalars Nm are encoded by the kinetic

potential

K̃(M,M̄ |ξ,R) = log R + K(M,M̄ ) − 1

R
Ref(IA)(JB)ξ

IAξJB , (4.28)
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which is obtained from the four-dimensional Kähler potential K(N, N̄) and gauge-coupling

function f(IA)(JB)(N). This implies that the inverse of the kinetic metric is given by

K̃00 = −R2 , K̃(IA)(JB) = −1

2
R Ref (IA)(JB) − ξIAξJB , K̃(IA)0 = −RξIA , (4.29)

where the index 0 labels the R-direction. As the embedding tensor satisfies Θ(IA)(JB) = 0,

equation (4.9) reduces to T = −DIAξIA. Using (4.29) one can then explicitly check that

the potential Vgauge in (4.26) takes the standard form

Vgauge = K̃mn̄TmTn̄ − K̃(IA)(JB)TIATJB − T 2. (4.30)

Hence one concludes that the additional term proportional to ξIAξJB in (4.29) precisely

ensures that the −T 2 term cancels for a kinetic potential K̃ of the form determined by (4.28)

and (4.31) in accord with the positive definiteness of the four-dimensional potential.

We would now like to uplift the three-dimensional action obtained in section 4.1 by

comparing it to the general expression (4.26) one obtains by reduction from four dimensions.

The four-dimensional Kähler potential and gauge kinetic function can be obtained from

the three-dimensional kinetic potential using (4.28). However, K̃ is not identical to the

kinetic potential obtained in section 4.1, where the complex scalars tα had been dualized

into vector multiplets (Lα, Aα). As detailed in appendix B, the potentials are related by a

Legendre transformation

K̃(M,M̄ |ξIA, R) = K̃(z,N |ξΛ) − 1
2 (tα + t̄α)Lα, Re tα = K̃Lα , (4.31)

where K̃ is a function of the complex scalars Mn = {tα, Na, zK} as well as the real vector

multiplet scalars ξIA, R. Unfortunately for the kinetic potential obtained in eq. (4.14) the

relation Re tα = K̃Lα cannot be explicitly inverted, so that we only obtain an implicit

expression for the four-dimensional Kähler potential K from (4.28) and (4.31). Explic-

itly the match of the 4d gauge coupling function and Kähler potential is performed as

follows. One expands the large volume expression for V in (4.14) keeping track of the ǫ

scalings (3.8), (3.27), and the form of the intersection numbers (3.20):21

K̃(M,M̄ |ξ) = log R + log

(

1

2

1

3!
KαβγLαLβLγ − 1

4R
CA

IJCλ
AKλαβLαLβξIAξJA + O(ǫ3)

)

+
i

4
Lα(Na − N̄a)(N b − N̄ b)

∫

Ẑ4

ωα ∧ Ψa ∧ Ψ̄b̄ + KCS , (4.32)

where we have used the vanishing of the intersections
∫

wIA∧Ψa∧ Ψ̄b =
∫

ω0∧Ψa∧ Ψ̄b = 0

due to (3.15). The unusual factor of 1
2 in our expansion of the volume

V =

∫

Z4

1

4!
J4 =

1

2

1

3!
Kαβγvαvβvγv0 + . . . (4.33)

is a result of the intersection numbers (3.21), which were chosen in this way in order to be

able to identify them with the intersection numbers (2.2) on the double cover to facilitate

the match with the IIB reduction.
21A more detailed discussion of this limit can be found in [61, 87].
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Next one has to expand the logarithm in (4.32) to quadratic order in ξIA, perform

the Legendre transform (4.31), and compare the result with the expression (4.28) obtained

from the 4d to 3d reduction. Note that in order that the 4d gauge coupling completes to

f(IA)(JB) =
1

2
δAB CA

IJ Cα
A tα , (4.34)

one has to add a term proportional to 1
RCA

IJCλ
AξIAξJA(Na− N̄a)(N b− N̄ b)

∫

Ẑ4
ωλ∧Ψa∧ Ψ̄b̄

to the kinetic potential (4.32) as discussed in [61].

To perform the match with the IIB reduction of section 2 we identify the correspon-

dence between the fields to be

vα ↔ vα
B , Na ↔ Ga , A0A ↔ 2πα′AA, (4.35)

where vα
B denote the Kähler moduli of the base. The gauging of the Na given in (4.3) is not

changed by the uplift from three to four dimensions and matches the gauging (2.18) of the

Ga if one takes into account the relation of the gauge fields. To identify the relationship

between tα and the Tα defined in (2.17) we use (4.32) to find

Re tα = ∂LαK̃ =
1

4
KαβγLβLγRV3 + . . . (4.36)

Now one uses the fact that in the F-Theory limit ǫ → 0 of vanishing fiber volume the

Kähler moduli scale as [61]22

Lα → 2
vα
B

VB
. (4.37)

At leading order in ǫ this implies

R =
2

V3

(

1

3
KαβγLαLβLγ

)−1

+ . . . → 1

4

V2
B

V3
. (4.38)

We are therefore led to identify

tα → 1

4
Kαβγv

β
Bv

γ
B + . . . =

1

2
Tα. (4.39)

Note that under the identifications of the various fields as given above the gauge kinetic

function (4.34) agrees with the Type IIB expression (2.21).

As shown in appendix B the gauging of the scalars tα after the Legendre transformation

is given in terms of the embedding tensor (4.16) by

∇tα = dtα − 2iΘαIAAIA. (4.40)

Inserting the expansion of the G4-flux and using the integrals (3.20), (3.22) one finds for

the gauging with respect to the diagonal U(1)

Θα0A = −1

4
NA

(

KαβγF̃A,βC
γ
A + KαabF̃A,aCb

A

)

. (4.41)

Using (4.39) this precisely reproduces the gauging (2.19) found in the IIB reduction.

22The factor of 2 again arises from the factor in the definition of the intersection numbers.
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In appendix B it is shown that the Legendre transformation implies ∂tαK = ∂tαK̃ =

−1
2Lα, while the derivatives with respect to the Na are not changed when going from the

kinetic potential to the four-dimensional Kähler potential. Using this we can evaluate the

four-dimensional D-terms despite not being able to carry out the Legendre transformation

explicitly. From (4.14) one obtains

D0A = −iKN̄aX̄a
IA + 2KT̄α

Θα0A = iK̃N̄aNACa
A − Θα0ALα

=
vα

4VNA

(

KαβγF̃A,βC
γ
A + Kαab(F̃A,a − δacbc)C

b
A

)

. (4.42)

Taking account of the relations (4.35) and (4.37) this matches the D-term of the corre-

sponding type IIB theory given in (2.25).

Finally let us note that the scalar potential (4.10) encodes a mass term for the scalar

ξ0A which becomes a component of the U(1) gauge field upon uplifting to four dimensions.

After setting fluxes to zero we find that the purely geometric contribution to this mass

is given by the first term in (4.10). Using the identities presented in appendix B it is

straightforward to check that this reproduces the mass m2
AB ∝ Kab̄C

a
ACb

B obtained in the

IIB reduction in (2.26) after rescaling to obtain canonical kinetic terms.

The matching of the gaugings and the associated masses and D-terms derived in this

section provide a further nontrivial check on our proposal regarding the description of

massive gauge symmetries using non-harmonic forms as well as the F-theory uplift of IIB

fluxes presented in section 3.3.

5 The geometry of the U(1)s

In the previous sections we have argued purely within supergravity that expansion of C3

in non-closed 2-forms correctly reproduces the effective action of massive U(1) bosons as

expected from a Type IIB perspective. In this section we discuss in more detail the origin

of these forms from a geometric point of view.

To this end we start from the well-known geometric realisation of massless U(1) sym-

metries and their non-Abelian generalisations in F/M-theory. As described in section 3

the Abelian gauge bosons residing in the Cartan of a non-Abelian gauge group G follow by

Kaluza-Klein expansion of the M-theory 3-form C3 along a set of rk(G) harmonic 2-forms

wi A.23 On the other hand, the gauge bosons related to the non-Cartan generators are

due to M2-branes wrapped along certain curves which in the singular limit have vanishing

volume such that the wrapped M2-branes become massless. There are two ways to make

both the divisors Di associated with the Cartan U(1)s and the curves associated with the

roots visible: by resolving or by deforming the singularity.

Let us start with the deformation of the singularity by moving the 7-branes supporting

the non-Abelian gauge group G off each other in the base. On a general Calabi-Yau 4-fold,

the deformed 7-branes generically intersect along the curve of self-intersection of the brane

divisor in the base after such a deformation. The fiber over this curve exhibits singularity

23We suppress the brane index A in the sequel. These two-forms are the Poincaré dual of a set of

holomorphic divisors Di.
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enhancement. This complication does not occur for F-theory on K3, where the 7-branes

are points on the base B. We therefore focus on this case to demonstrate the geometric

origin of the membrane curves in the deformed phase.24 An important fact which we will

use is that on K3 local mirror symmetry implies that the resolution and deformation are

dual to each other [91].

5.1 Local deformations and resolutions

Consider an AN−1 singularity whose defining equation in C
3 is

y2 = −x2 + zN . (5.1)

The singularity is at z = 0. The singularity admits a universal deformation which is the

so-called preferred versal form

y2 = −x2 + zN +
N
∑

I=2

bIz
N−I . (5.2)

We will generally denote indices that run up to N with I and indices that run up to N − 1

with i. We can write the deformed singularity as

y2 = −x2 +
N
∏

I=1

(z + tI) , (5.3)

where the bI are then elementary symmetric polynomials of degree I in the coordinates tI

and we have to impose that

b1 =
N
∑

I=1

tI = 0 . (5.4)

The N parameters tI parameterise the deformation of the singularity such that if they

are all non-vanishing the original singularity at z = 0 is fully deformed. The singularity

enhances at the points z = −tI up to the full AN−1 for all the tI coincident. Therefore

there are N enhancement points. At each such point an S1 collapses which we can identify

explicitly by projecting to the imaginary plane of (x, y)

(Im y)2 + (Im x)2 = −
N
∏

I=1

(z + tI) . (5.5)

Within the K3, the collapsing S1 is the A-type cycle of the elliptic fiber. One can con-

struct 2-cycles stretched between the branes by fibering this collapsing S1 over a real curve

connecting the tI points. The curves vi, with i = 1, . . . , N − 1, are the fibration of the

collapsing A-cycle over the line ti − ti+1,

vi : A−cycle → (ti − ti+1). (5.6)

24A recent in depth analysis of the 2-cycle and group theory structure on elliptic K3 is provided in [89, 90].
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The geometry matches the group theory of SU(N) as follows: the N tI are identified

with the weights of the fundamental representation, while the N − 1 vi are identified the

simple roots. Each simple root is associated to a non-Cartan generator and this generator

corresponds to an M2-brane wrapping the curve vi. More general generators result from

M2-branes along all possible chains of vi, Ckl = vk ∪ vk+1 ∪ . . .∪ vl, with both orientations

of the M2-branes taken into account [92].

Let us now turn to the resolution, which replaces the singularity in the fiber by a

set of rk(SU(N)) = N − 1 homologically independent resolution P
1s. If the singularity is

embedded into a compact space, these N −1 resolution P
1 combine with the compliment of

the resolution tree to form N curves, only N − 1 of which are homologically independent.

On K3 the complexified Kähler parameters (measuring the volume and B-field) of these P
1

are mirror dual to the deformation parameters tI and will be denoted by t̃I .

The sum
∑N

I=1 t̃I is homologically trivial matching the relation of the weights (5.4).

The associated N − 1 homology representatives are given by the dual to the vi which we

denote ṽi = t̃i − t̃i+1. These 2-cycles intersect according to the Cartan matrix as indeed

the simple roots do.25

The Cartan U(1)s arise from expanding the M-theory 3-form C3 in 2-forms wi which

are associated to the root 2-cycles ṽi in the following way: To see the explicit relation we

need to be careful regarding the intersection of the roots, and for this it is useful to consider

the Calabi-Yau 4-fold case. Although in 4 dimensions two 2-cycles naturally intersect at a

point, in 8 dimensions this applies to 6-cycles and 2-cycles. Then to preserve the Cartan

matrix intersection structure we should define the inner product between two roots, or

2-cycles, by associating a dual 6-cycle to each root and then intersecting it with another

root’s 2-cycle.26 A way to associate these divisors, which we denote by t̃I , is by taking a

basis that satisfies

t̃I · t̃J = −δJ
I . (5.7)

Then the 2-forms Poincaré dual to the 6-cycles Di = t̃i − t̃i+1 are the wi.
27 In the case of

K3 the DI and ṽi happen to be again 2-cycles. Likewise the Poincaré duals of the 2-cycles

t̃I are also 2-forms.

5.2 The diagonal U(1)

We now turn to the picture for the diagonal U(1). Our proposal is that the diagonal U(1)

is accounted for by the fact that there are N resolution spheres but only N −1 cohomology

classes. To be more explicit consider the 2-forms ωI Poincaré dual to the divisors t̃I so

that ∫

t̃I

ωJ = −δI
J . (5.8)

25Together with v0 = −

P

i
vi they therefore form the nodes of the extended Dynkin diagram. If the

singularity is embedded into the elliptic fiber of an elliptic fibration, as in the applications to F-theory, the

group theoretic identity
PN−1

j=0 vj = 0 translates into the homological relation
PN−1

j=0 [vj ] + [e] = [0] with [e]

denoting the class of the smooth elliptic fiber.
26See e.g. [88], where the curves and divisors are respectively denoted by ǫ and S in (8.18).
27To conform with our previous notation, we label the divisors Di with a downstairs index even though

they correspond to the Cartan generators.
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Then we have

− 1 =

∫

PN
I=1 t̃I

ωJ =

∫

∂C
ωJ =

∫

C

dωJ , (5.9)

where we have introduced the chain C associated to the homological triviality of the N

spheres. This means that the ωJ cannot be closed. However wi = ωi − ωi+1 is closed,

harmonic, and leads to the Cartan U(1)s as discussed in the previous section.

The claim is that the diagonal U(1) arises from expanding C3 in the two form

w0 ≡
N
∑

I=1

ωI . (5.10)

Such a form is not closed and is naturally associated to the sum of the weights
∑N

I=1 t̃I .

This proposal holds irrespective of the dimension of the Calabi-Yau including the

physically relevant case of 4-folds. However, certainly on K3, there is something missing

from the picture because we know that for K3 the U(1) should in fact be massless and

so correspond to a harmonic form. This is clear from the type IIB perspective, where the

brane and its image are in the same homology class. Therefore in the K3 case we expect a

massless U(1) and correspondingly a resolution parameter such that
∑N

i=1 tI 6= 0. The key

point to realise is that, as expected from IIB, the masslessness of this U(1) is not a local

property. To see how the U(1) arises explicitly in a non-local sense it is simpler to consider

the deformation picture. Consider starting from an AN+M−1 singularity

y2 = −x2 + zN+M , (5.11)

and deforming it to an AN−1 × AM−1 singularity

y2 = −x2 +
(

z + t(N)
)N (

z + t(M)
)M

, (5.12)

which can be further deformed completely as

y2 = −x2 +

N
∏

I=1

(

z + t
(N)
I

)

M
∏

I=1

(

z + t
(M)
I

)

. (5.13)

The initial deformation amounts to separating a stack of branes so that we break SU(N +

M) → SU(N) × SU(M) × U(1). If we look locally at each singularity we would have the

constraint
N
∑

I=1

t
(N)
I =

M
∑

I=1

t
(M)
I = 0 . (5.14)

However we know that in the initial singularity we only had the constraint

N
∑

I=1

t
(N)
I +

M
∑

I=1

t
(M)
I = 0 . (5.15)

Hence we are free to take a deformation with say
∑N

I=1 t
(N)
I 6= 0, but we should consider

it in a global sense. Similarly there is a new 2-cycle which we can wrap membranes on

which cannot be seen locally but rather corresponds to the fibration of the A-cycle over

the line t(N) − t(M).
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The dual setup to this, involving resolutions such that tI → t̃I , then amounts to

precisely the case where the diagonal U(1) is massless. And like the deformation this is a

non-local property (on K3 the non-local part is the same since the mirror symmetry does

not act on the trivial R8 base).28 Let us translate this deformation picture explicitly to

the resolution discussion presented above. We would now have

N
∑

I=1

t̃
(N)
I +

M
∑

I=1

t̃
(M)
I = ∂C , (5.16)

however

0 =

∫

∂C

(

Mw
(N)
0 − Nw

(M)
0

)

=

∫

C

d
(

Mw
(N)
0 − Nw

(M)
0

)

, (5.17)

which identifies the closed 2-form combination and massless mode.

The picture presented here has been for the U(1) associated to a separation of brane

stacks. However in the IIB picture we were concerned with a brane stack and its orientifold

image. The same non-local geometry discussion follows through in that case as well. We

present the explicit details in appendix C by deforming a DN singularity to an AN−1 one.

6 Interpretation and further directions

In this article we have made a proposal to describe the uplift of the diagonal U(1) ⊂ U(N)

gauge symmetries of Type IIB orientifolds to F-theory. In orientifold models with exchange

involution, the diagonal U(1) of a given brane stack is massive. We have collected evidence

based on M/F-theory duality that such massive U(1) bosons uplift to modes from expanding

the M-theory 3-form C3 in certain non-harmonic 2-forms. We have shown in detail, by

compactifying M-theory to three dimensions, that this reduction ansatz correctly encodes

the gauging of the axions participating in the Stückelberg mechanism and the Stückelberg

mass itself. Including also non-harmonic 4-forms we have been able to extend this match

to a proposal for the uplift of the D3-brane and D5-brane tadpoles, as well as the chirality

formula from Type IIB to F-theory.

Our 3-dimensional supergravity analysis fits into the framework of supergravity reduc-

tion on non-Kähler manifolds. A reduction of the Kähler form J along the non-harmonic

2-forms leads to a 3-dimensional scalar v0A whose VEV measures deviation from the Kähler

condition dJ = 0. However, in the vacuum v0A = 0, we recover the Calabi-Yau condi-

tion. Note that in the 3-dimensional M-theory compactifications the volumes v0A and the

vectors A0A are in the same supermultiplet, and lift together to the components of the

four-dimensional U(1) vector comprising the diagonal U(1). Clearly, in a 4-dimensional

vacuum the diagonal U(1) should have a zero VEV to preserve Poincaré invariance. How-

ever, for the fluctuations supersymmetry requires the use of non-harmonic forms both in

the reduction of the supergravity forms and the forms characterizing the geometry. This

is is familiar from other N = 1 compactifications on non-Calabi-Yau threefolds. In these

cases one obtains massive R-R gauge bosons from the reduction into non-harmonic forms,

28The fact that a singularity resolution can be locally non-Kähler but not globally so due to homological

relations is familiar from CY conifold transitions [93].
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as discussed e.g. in [74]. These R-R gauge bosons become massive by ‘eating’ an R-R axion

which sits with the non-Calabi-Yau deformations in the same supermultipet.

The successful match of the defining data of the F/M theory and Type IIB supergravity

therefore leads us to conjecture the presence of a special set of non-harmonic 2-forms w0A in

the geometry of elliptically fibered Calabi-Yau fourfolds that describe the uplift of Type IIB

orientifolds with exchange involution. Locally, using group theoretic arguments, we have

argued that a natural candidate for this 2-form is the combination (5.10) of 2-forms dual to

the N resolution 2-cycles t̃I of an AN−1 singularity. However, from the IIB setting we know

that the mass of the U(1) is not a local property but rather a global one. Although we were

able to deduce many global properties of the non-harmonic forms by using the supergravity

analysis we did not give a complete global geometric identification of such forms. Such

an identification should involve a criterion for distinguishing the special set (5.10) from

the infinity of other non-harmonic forms in the manifold. We will sketch two possible

interpretations in the following.

A first possibility is to more rigorously establish a global treatment of the local argu-

ments presented in section 5. More precisely, one might be able to argue that the number of

U(1)’s are captured by the precise number of holomorphic curves supported in the globally

resolved elliptic fibration in the Calabi-Yau prescription. In fact, a basis of such holomor-

phic curves can be found for elliptic fibrations realized in toric ambient spaces. A direct

computation shows that among the basis element for the Mori cone of holomorphic curves

there is one generator corresponding to the extra curve (5.10). An independent variation

of the volume of this curve will account for the extra fluctuation violating the Calabi-Yau

condition. However, it remains to establish precise global criteria when it is possible to

construct the associated higher non-harmonic forms which we used in our reduction. Most

interesting would be to find quasi-topological data of the resolved fourfold which allow one

to count the number and compute the couplings of such massive diagonal U(1)s. One could

hope to find an analog of the Mordell-Weil group which can be studied for massless U(1)s.

A second possibility would be that the relevant two-forms are given by elements in

the torsion cohomology groups of the fourfold. Recently, in [75], such torsion forms were

invoked in the context of the dimensional reduction of the closed string R-R forms of Type

II orientifolds in order to describe massive R-R U(1) forms. It was also suggested that

massive type IIA D6 open-string U(1)s can be described in this way by uplifting to M-

theory on a G2 manifold. If this latter proposal is correct, it is natural to suggest that our

non-closed forms can be counted by torsion cohomology of the resolved non-Kähler space

Ẑ4 or the resolved Calabi-Yau space Ŷ4. It would be very interesting to make this conjecture

more concrete with an explicit example (perhaps by extending the work of [78–80]).

If the non-closed forms proposed in this work (and prior to that in [23]) are indeed

associated to torsion cohomology then there are interesting consequences. In this case there

is an obvious associated discrete Zk symmetry which manifests itself in the effective theory.

In particular, the Stückelberg mechanism induces a breaking of the U(1) gauge theory to a

Zk gauge theory, with k given by the charge of the Stückelberg axion participating in the

Higgsing [94–96]. This implies that we would expect massive solitonic objects with charge
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mod k with respect to this Zk gauge theory [75, 94, 95],29 and also a remnant exact discrete

symmetry in the effective action which may have useful phenomenological implications [96].

It is not clear what discrete symmetry should be associated to our constructions. We expect

that for a single brane stack it is either trivial (which would be associated to a chain with

one boundary) or Z2, and that the rank should increase with the number of brane stacks.

One interesting aspect of the U(1) symmetries studied is their effect on instantons. In

the orientifold limit it is well-known that the U(1)s, even when massive, remain as pertur-

bative selection rules organising the pattern of operators in the effective theory (such as

Yukawa couplings), and are broken only non-perturbatively by D3-brane instantons [34–37].

This includes the possibility of D3-D(1)-D(-1) bound states or equivalently of fluxed D3-

instantons [65], whereas instantons with vanishing D3-charge do not contribute to the

superpotential. D3-brane instantons lift to M5-instantons in M-theory [97], whose effects

in F-theory have recently been under closer investigation in [98–103]. Note that M5-

instantons are not accounted for by the geometry of the elliptic fibration. This gives rise

to the expectation [65] that the U(1) selection rules persist in M- and F-theory, violated

only by corresponding M5-instantons, even though there will in general be no simple gs

suppression any more for the mass of the gauge potential away from the strict orientifold

regime. The fact that the U(1) selection rules continue to operate in the F-theory uplift

is corroborated by our supergravity analysis, which identifies a method to trace back the

dynamics of the U(1) bosons.

Our analysis in this paper was based on F-theory models which have a simple type IIB

uplift. On the other hand, it is also well-known that generic classes of the F-theory models

exhibit a structure of Yukawa couplings beyond what is possible in Type IIB orientifolds

due to exceptional singularity enhancement [4–7]. In those models we expect that there

is no diagonal U(1), not even a massive one, associated with an AN−1 singularity along

a brane divisor. It would be interesting to investigate if this is the case and if so what is

the geometric mechanism responsible for the disappearance of the non-harmonic 2-forms

in this case. One expects that this is due to a more complicated monodromy structure

because of exceptional enhancement. However, since the study of global monodromies can

be notoriously complicated it would be nice to find a more direct topological criterion.
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A Conventions

This appendix summarizes the conventions we use in the Type IIB orientifold setting.

All Ramond-Ramond fields Cp as well as the NS-NS 2-form B2 are chosen dimensionless

in the sense that
∫

Γp
Cp is dimensionless for any p-chain Γp. The kinetic terms of the

Ramond-Ramond fields in the democratic formulation are given by

Skin = − 1

8κ2
10

∫

Gp ∧ ∗Gp , (A.1)

where the field strengths are defined as Gp+1 = dCp − dB2 ∧ Cp−2, p = 0, 2, 4, 6, 8. They

satisfy the duality relations

∗ Gp = (−1)(p−1)/2G10−p, (A.2)

which are to be imposed at the level of the equations of motion. Finally the gravitational

coupling constants are dimensionless in these conventions

1

2κ2
10

=
1

2κ2
4

= 2π. (A.3)

The Chern-Simons action of a single Dq-brane along a cycle Γ of the Calabi-Yau

manifold X3 is given by

SCS = −2π

∫

R1,3×Γ

∑

p

C2p ∧ tr
[

e2πα′
F

]

√

Â(TD)

Â(ND)
. (A.4)

Taking the orientifold projection into account we add the actions of brane and image-

brane stacks and divide by two. In this picture an O7-plane carries a relative charge of

-4 compared to the D7-branes. For the purpose of deriving D7-, D5- and D3-tadpoles we

must include an additional factor of 1
2 in the Chern-Simons actions (but not in the Dirac-

Born-Infeld action) when using the democratic formulation. This compensates for the fact

that it includes explicitly both the equivalent electric and magnetic degrees of freedom.

To describe a stack of NA D7-branes along a divisor DA and the corresponding image

stack along D′
A it is convenient to define the combinations

D±
A = DA ∪ ±D′

A. (A.5)

The expansion of the respective Poincaré duals in terms of the coh

[D+
A ] = Cα

Aωα , [D−
A ] = Ca

Aωa . (A.6)

The index measuring the net chirality between two stacks of branes is given by

IAB = −
∫

DA ∧ DB ∧ (F̃A
0 − F̃B

0 ) (A.7)

with F̃A
0 defined in (2.9). For the chirality along the intersection of a brane stack and an

image stack one must further take into account that fluxes along an image stack are given
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by F̃ ′ = −σ∗F̃ , leading to

IAB′ = −
∫

DA ∧ D′
B ∧ (F̃A

0 + σ∗F̃B
0 ) , (A.8)

IAA′ = −
∫

DA ∧ D′
A ∧ (F̃A

0 + σ∗F̃A
0 ) . (A.9)

Here F̃ includes a contribution from the Kalb-Ramond B-field as defined in (2.9). In order

to study the F-Theory lift of these quantities it is helpful to expand these expressions by

inserting the expansions (2.10) of the fluxes into positive and negative parity basis forms.

Using the intersection numbers (2.2) one straightforwardly finds

IAB = −1
4

(

KαβγC
β
AC

γ
B + KαabC

a
ACb

B

)(

F̃A,α
0 − F̃B,α

0

)

−1
4

(

KαabC
α
ACa

B + KαabC
a
ACα

B

)(

F̃A,b
0 − F̃B,b

0

)

, (A.10)

IAB′ = −1
4

(

KαβγC
β
AC

γ
B −KαabC

a
ACb

B

)(

F̃A,α
0 + F̃B,α

0

)

−1
4

(

KαabC
α
BCa

A −KαabC
a
BCα

A

)(

F̃A,b
0 − F̃B,b

0

)

, (A.11)

where we have focused on the contribution due to fluxes along the diagonal U(1). Note that

the dependence on the continuous modulus ba in the expansion B = B++B− = bαωα+baωa

has dropped out in accordance with the fact that the chirality index is a discrete quantity.

Furthermore the discrete quantity bα contributes only to IAB′ and not IAB. Finally, for

the intersection of a brane stack with its own image stack the second formula simplifies to

IAA′ = −1

2

(

KαβγC
β
AC

γ
A −KαabC

a
ACb

A

)

F̃A,α
0 . (A.12)

B Dualising the 3D action

In this appendix we give more details regarding the dualisation of some of the gauged

scalars to vectors in the general N = 2 three-dimensional action. As discussed in section 3

this is required to match the three-dimensional action resulting from direct reduction of

the M-theory action. We start from the general action for the gauged scalar multiplets

given in [81]

S(3)
N=2 =

∫

−1
2R3 ∗ 1 − KAB̄ ∇NA ∧ ∗∇N̄ B̄ − 1

2ΘABAA ∧ FB − (VT + VF ) ∗ 1 , (B.1)

with covariant derivatives

∇NA = dNA + ΘBCX̃AB AC . (B.2)

The gauging is implemented via this covariant derivative and yields the equations of motion

for the vector fields AA given by

∗ FA = 2Re
(

KBC̄X̃C̄A∇NB
)

. (B.3)
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The scalar potential is given by

VT = KAB̄∂AT ∂B̄T − T 2 , VF = eK(KAB̄DAWDBW − 4|W |2) . (B.4)

Note that in the formulation (B.1) the scalars are the propagating degrees of freedom in the

theory, while the vectors carry no propagating degrees of freedom. The object ΘAB plays

the role of the ‘embedding tensor’ specifying which vectors appear in the gauging. Note

that the following manipulations go through almost unchanged if in addition to the charged

scalars one includes a set of propagating vector multiplets (ξ̃r, Ãr). In this case the only al-

teration would be that index M I in the following formulae should run over {ξ̃r,M I} instead.

The full set of scalar multiplets is denoted by NA which we decompose as NA =

{M I , tΛ}. The distinction is that the tΛ will be dualised to vector multiplets so that the

AΛ become proper propagating fields. This is implemented by assuming constant shift

gauging vectors and a constant embedding tensor Θ satisfying

X̃ΛΣ = −2iδΛΣ , X̃ΛI = 0 , ΘIJ = 0. (B.5)

This shift symmetry allows for the dualisation to vectors (which is not possible for general

gauging vectors). If we assume that the submatrix K(t) = (KtΛtΣ) is separately invertible

with inverse K
tΛtΣ
(t) we can rewrite (B.3) as

ΘΛIA
I = −ΘΛΣAΣ + 1

2d(Im tΛ) + 1
2KtΛtΣ

(t) Im [KtΣMI∇M I ] − 1
8KtΛtΣ

(t) ∗ FΣ. (B.6)

We can use this to integrate out the non-propagating vectors AI by inserting (B.6) into

the action (B.1). The resulting action is given by S =
∫

−1
2R3 ∗ 1 − (VT + VF ) ∗ 1 + L1,

where

L1 = −KMIM̄ J̄∇M I ∧ ∗∇M̄ J̄ − 2Re (KtΛMJ∇MJ) ∧ ∗dRe tΛ

−KtΛtΣdRe tΛ ∧ ∗dRe tΣ + KtΛtΣ
(t) Im [KtΛMI∇M I ] ∧ ∗Im [KtΣMJ∇MJ ]

− 1
16K

tΛtΣ
(t) FΛ ∧ ∗FΣ + 1

2ΘΛΣAΛ ∧ FΣ − 1

2
K

tΛtΣ
(t) FΛ ∧ Im [KtΣMI∇M I ]. (B.7)

We see that the imaginary parts of the tΛ have been dualized into the propagating vectors

AΛ. The real superpartners ξΛ are obtained from Re tΛ by applying a Legendre transfor-

mation

K (t,M) = K̃ (ξ,M) − 1
2 (tΛ + t̄Λ) ξΛ , (B.8)

Re tΛ = K̃ξΛ . (B.9)

Note that due to the shift symmetry the Kähler potential K (t,M) actually only depends

on the Re tΛ.

Following [62, 63] we differentiate (B.8) and (B.9) with respect to tΛ and M I to

determine the useful relations

∂ξΛ

∂tΣ
= 1

2K̃ξΛξΣ
,

∂ξΣ

∂M I
= −K̃ξΛξΣ

K̃ξΛMI ,

dRe tΛ = K̃ξΛξΣdξΣ + 2Re[K̃ξΛMIdM I ] ,

KtΛ = −1
2ξΛ , KMI = K̃MI . (B.10)
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Differentiating again we deduce

KtΛ t̄Σ =−1

4
K̃ξΛξΣ

, KtΛ t̄Σ =−4K̃ξΛξΣ + 4K̃ξΛMI K̃MIM̄ J̄

K̃M̄ J̄ξΣ ,

KtΛM̄ Ī =
1

2
K̃ξΛξΣ

K̃ξΣM̄ Ī , KtΛM̄ Ī

=2K̃M̄ ĪMJ

K̃MJξΛ ,

KMIM̄ J̄ =K̃MIM̄ J̄ − K̃MIξΛK̃ξΛξΣ
K̃ξΣM̄ J̄ , KMIM̄ J̄

=K̃MIM̄ J̄

. (B.11)

With the help of these relations we may rewrite

L1 = −K̃MIM̄ J̄∇M I ∧ ∗∇M̄ J̄ + 1
4K̃ξΛξΣdξΛ ∧ ∗dξΣ +

1

4
K̃ξΛξΣFΛ ∧ ∗FΣ

+1
2ΘΛΣAΛ ∧ FΣ + FΛ ∧ Im[K̃ξΛMI∇M I ]

−dξΛ ∧ ∗Re[K̃ξΛMI X̃IJΘJΣAΣ]

−K̃ξΛξΣ
Re[K̃ξΛMI X̃IJΘJΣAΣ] ∧ ∗Re[K̃ξΣMI′ X̃

I′J ′

ΘJ ′ΣAΣ]. (B.12)

Let us now focus on the case where X̃IJ is real. Then (B.2) describes the gauging of a

shift symmetry of the real part of M I , so that the Kähler potential must depend only on

the imaginary part of M I . This implies that K̃ξΛMI is purely imaginary, so that the last

two lines of (B.12) vanish.

We now aim to determine the transformed scalar potential. We return to the F-term

piece VF later but first consider the ‘D-term’ piece VT which is given in terms of the gauging

i∂APB = KACX̃CB ,

T = −1
2PAΘABPB . (B.13)

To do this we also need to transform the derivatives

TTΛ
→ 1

2K̃ξΣξΛTξΣ , TMI → TMI − K̃ξΣξΛ
K̃ξΛMITξΣ . (B.14)

This gives the resulting scalar potential

VT = K̃MIM̄ J̄

∂MIT ∂M̄ J̄T − K̃ξΛξΣ
∂ξΛT ∂ξΣT − T 2 . (B.15)

We should also rewrite T . Since we already know the gauging vectors for the tΛ which

we dualised we can write

PΛ = −ξΛ . (B.16)

For the remaining chiral fields we need to transform the general expressions (B.13). Taking

the derivative index to be tΛ and M I gives the expressions

i∂tΛPI = KtΛM̄ J̄ X̃ J̄I , i∂MKPI = KMKM̄ J̄ X̃ J̄I . (B.17)

Transforming these gives

i∂ξΛPI = K̃ξΛM̄ J̄ X̃ J̄I , (B.18)

i∂MKPI − iK̃ξΛξΣ
K̃ξΣMK∂ξΣPI =

(

K̃MKM̄ J̄ − K̃MKξΛK̃ξΛξΣ
K̃ξΣM̄ J̄

)

X̃ J̄I .
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Using the first equation of (B.18) in the second gives the expression

i∂MKPI = K̃MKM̄ J̄ X̃ J̄I . (B.19)

This is very similar to the D-term equation in four dimensions. To make a closer match

we define

DΣ = ΘΣIPI , X J̄
Σ = ΘΣIX̃

J̄I , (B.20)

which gives

i∂MK DΣ = K̃MKM̄ J̄ X J̄
Σ . (B.21)

This is of the same form as the usual four-dimensional D-term equation. Finally we can

write T in terms of the transformed quantities

T = −1
2ξΣΘΣΛξΛ + DΣξΣ . (B.22)

This completes the dualisation of the D-term piece VT .

The F-term piece VF of the scalar potential will not play a role in our calculations but

for completeness we also transform it here. To do so we note that

DTΛ
W → −1

2
ξΛW ,

DMIW → [∂MI W + (∂MIK) W ] + K̃ξΛMIξΛW ≡ DMI W + K̃ξΛMI ξΛW . (B.23)

Where we henceforth denote the part in the square brackets as DMI W noting that in it

the Kähler potential rather than the kinetic potential appears. With these transformations

and using (B.11) we find

VF = eK
[

K̃MIM̄ J̄

DMI WDM̄ J̄ W −
(

4 + K̃ξΛξΣξΛξΣ
)

|W |2
]

. (B.24)

C Breaking Dn → An−1 × U(1)

In section 5 we considered deforming an An+m−1 singularity to an An−1×Am−1 singularity

in order to identify the non-local realisation of the U(1) associated to two stacks of branes.

In this appendix we consider deforming a Dn singularity to an An−1 singularity which will

allow us to identify the non-local realisation of the U(1) associated to a brane and image

pair. The deformation of a Dn singularity from the perspective of the cycle geometry has

been discussed in great detail in [89, 90].

The defining equation for a Dn singularity is

y2 = −x2z + zn−1 . (C.1)

We can resolve it to preferred versal form

y2 = −x2z + zn−1 +

n−1
∑

i

δ2iz
n−i−1 − 2γnx , (C.2)
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with δ2i being the elementary symmetric polynomials of degree i in the t2i and γn =
∏n

i ti.

The deformation parameters ti are similar to those of an An−1 singularity except that now

there is no traclessness constraint (5.4). A compact way to write this is

y2 = −x2z +
1

z

(

gDn − f2
Dn

)

− 2xfDn , (C.3)

with the explicit form being

y2 = −x2z +
1

z

[

n
∏

i

(

z + t2i
)

−
n
∏

i

t2i

]

− 2x

n
∏

i

ti . (C.4)

Identifying the 2-cycles is more complicated than the An−1 case. We can rewrite the

equation as
(

y′
)2

+
(

x′
)2

=

n
∏

i

(

z + t2i
)

, (C.5)

with y′ =
√

zy and x′ = xz + f . Then we have a collapsing S1, given by restricting to

the real (x, y)-planes, at z = −t2i . However tracking the fibration of this S1 over a real

line in the z-plane is more complicated since the coordinate y′ has branch cuts. For the

cycles where the path through z̃ connecting the ti does not go through the branch cut the

cycles are simply constructed as in the An−1 case. For the cases where the path crosses

the branch cut we can go to the double cover z̃ =
√

z giving

(

ỹ′
)2

+
(

x̃′
)2

=
n
∏

i

(

z̃2 + t2i
)

, (C.6)

with ỹ′ = z̃y and x̃′ = xz̃2 + f . Now we have doubled the degeneration points since they

occur at z̃ = ±iti. This is now two copies of a resolved An−1 singularity but with also

the possibilities of constructing cycles between the two. Indeed we can identify the P
1 by

restricting to the real subspace of (x̃′, ỹ′) and the imaginary one of z̃′ while considering a

path between say it1 and −it1 so that

(

Re ỹ′
)2

+
(

Re x̃′
)2

+ (Im z̃)2 = t21 , (C.7)

giving the P
1. In the IIB limit these are string stretching between the brane and its image.

The simple roots are constructed as fibrations over the lines vi = ti − ti+1 with i =

1, . . . , n− 1 and vn = tn−1 + tn. In the single cover we connect ti points as before but now

can also connect them by circling around z = 0 or not thereby giving the possibility of the

vn root. In the double cover the sign choice corresponds to connecting +iti with ∓itj .

To see the origin of the U(1) we should consider the resolving the singularity Dn →
An−1 × U(1). This breaking is done by taking (t1, . . . , tn) = (t, . . . , t). This gives a Dn

singularity at t = 0 and also gives an An−1 singularity for t 6= 0 located at z = −t2 [8–11].

Therefore this is describing the separation of brane stacks from the orientifold. The simple

roots for the Dn singularity are vi = 0 for i 6= n. This, in the mirror picture, identifies the

diagonal U(1) as the resolution combination ṽn.
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[90] A.P. Braun, A. Hebecker, C. Lüdeling and R. Valandro, Fixing D7 Brane Positions by

F-theory Fluxes, Nucl. Phys. B 815 (2009) 256 [arXiv:0811.2416] [INSPIRE].

[91] S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4 − D N = 2 gauge

theories: 1., Adv. Theor. Math. Phys. 1 (1998) 53 [hep-th/9706110] [INSPIRE].

[92] S.H. Katz, D.R. Morrison and M. Plesser, Enhanced gauge symmetry in type-II string

theory, Nucl. Phys. B 477 (1996) 105 [hep-th/9601108] [INSPIRE].

[93] B.R. Greene, D.R. Morrison and A. Strominger, Black hole condensation and the

unification of string vacua, Nucl. Phys. B 451 (1995) 109 [hep-th/9504145] [INSPIRE].

[94] J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane charges in five-brane backgrounds,

JHEP 10 (2001) 005 [hep-th/0108152] [INSPIRE].

[95] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity,

Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

– 49 –

http://dx.doi.org/10.1016/S0393-0440(96)00042-3
http://arxiv.org/abs/hep-th/9609122
http://inspirehep.net/search?p=find+EPRINT+hep-th/9609122
http://arxiv.org/abs/1011.6388
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.6388
http://dx.doi.org/10.1088/1126-6708/2009/08/076
http://arxiv.org/abs/0812.0175
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.0175
http://dx.doi.org/10.1007/JHEP04(2010)076
http://arxiv.org/abs/0906.0003
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0003
http://dx.doi.org/10.1088/1126-6708/2009/09/053
http://arxiv.org/abs/0906.0013
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0013
http://dx.doi.org/10.1088/1126-6708/2003/04/046
http://arxiv.org/abs/hep-th/0212255
http://inspirehep.net/search?p=find+EPRINT+hep-th/0212255
http://dx.doi.org/10.1016/S0550-3213(00)00091-2
http://arxiv.org/abs/hep-th/9912181
http://inspirehep.net/search?p=find+EPRINT+hep-th/9912181
http://dx.doi.org/10.1088/0264-9381/22/9/016
http://arxiv.org/abs/hep-th/0412006
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412006
http://dx.doi.org/10.1103/PhysRevD.72.026004
http://arxiv.org/abs/hep-th/0505177
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505177
http://dx.doi.org/10.1088/1126-6708/2006/01/008
http://arxiv.org/abs/hep-th/0505264
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505264
http://dx.doi.org/10.1016/j.nuclphysb.2006.05.003
http://arxiv.org/abs/hep-th/0602241
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602241
http://arxiv.org/abs/1109.3191
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3191
http://dx.doi.org/10.1016/S0550-3213(97)00279-4
http://arxiv.org/abs/hep-th/9702198
http://inspirehep.net/search?p=find+EPRINT+hep-th/9702198
http://dx.doi.org/10.1016/j.nuclphysb.2008.03.021
http://arxiv.org/abs/0801.2163
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2163
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.025
http://arxiv.org/abs/0811.2416
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.2416
http://arxiv.org/abs/hep-th/9706110
http://inspirehep.net/search?p=find+EPRINT+hep-th/9706110
http://dx.doi.org/10.1016/0550-3213(96)00331-8
http://arxiv.org/abs/hep-th/9601108
http://inspirehep.net/search?p=find+EPRINT+hep-th/9601108
http://dx.doi.org/10.1016/0550-3213(95)00371-X
http://arxiv.org/abs/hep-th/9504145
http://inspirehep.net/search?p=find+EPRINT+hep-th/9504145
http://dx.doi.org/10.1088/1126-6708/2001/10/005
http://arxiv.org/abs/hep-th/0108152
http://inspirehep.net/search?p=find+EPRINT+hep-th/0108152
http://dx.doi.org/10.1103/PhysRevD.83.084019
http://arxiv.org/abs/1011.5120
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5120


J
H
E
P
1
2
(
2
0
1
1
)
0
0
4

[96] M.B. Gonzalez, L.E. Ibáñez, P. Soler and A.M. Uranga, Discrete gauge symmetries in

D-brane models, arXiv:1106.4169 [INSPIRE].

[97] E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343

[hep-th/9604030] [INSPIRE].

[98] R. Blumenhagen, A. Collinucci and B. Jurke, On Instanton Effects in F-theory,

JHEP 08 (2010) 079 [arXiv:1002.1894] [INSPIRE].
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