109 research outputs found

    Altered plasticity of the parasympathetic innervation in the recovering rat submandibular gland following extensive atrophy

    Get PDF
    Adult rat submandibular glands have a rich autonomic innervation, with parasympathetic and sympathetic nerves working in synergy rather than antagonistically. Ligation of the secretory duct rapidly causes atrophy and the loss of most acini, which are the main target cell for parasympathetic nerves. Following deligation, there is a recovery of gland structure and function, as assessed by autonomimetic stimulation. This study examines whether the parasympathetic nerves reattach to new target cells to form functional neuro-effector junctions. Under recovery anaesthesia, the submandibular duct of adult male rats was ligated via an intra-oral approach to avoid damaging the chorda-lingual nerve. Four weeks later, rats were either killed or anaesthetized and the ligation clip removed. Following a further 8 weeks, both submandibular ducts were cannulated under terminal anaesthesia. Salivary flows were then stimulated electrically (chorda-lingual nerve at 2, 5 and 10 Hz) and subsequently by methacholine (whole-body infusion at two doses). Glands were excised, weighed and divided for further in vitro studies or fixed for histological examination. Ligation of ducts caused 75% loss of gland weight, with the loss of most acinar cells. Of the remaining acini, only 50% were innervated despite unchanged choline acetyltransferase activity, suggesting few parasympathetic nerves had died. Following deligation, submandibular glands recovered half their weight and had normal morphology. Salivary flows from both glands (per unit of gland tissue) were similar when evoked by methacholine but greater from the deligated glands when evoked by nerve stimulation. This suggests that parasympathetic nerves had reattached to new target cells in the recovered glands at a greater ratio than normal, confirming reinnervation of the regenerating gland

    A geometric interpretation of eddy Reynolds stresses in barotropic ocean jets

    Get PDF
    Barotropic eddy fluxes are analysed through a geometric decomposition of the eddy stress tensor. Specifically, the geometry of the eddy variance ellipse, a two-dimensional visualization of the stress tensor describing the mean eddy shape and tilt, is used to elucidate eddy propagation and eddy feedback on the mean flow. Linear shear and jet profiles are analysed and theoretical results are compared against fully nonlinear simulations. For flows with zero planetary vorticity gradient, analytic solutions for the eddy ellipse tilt and anisotropy are obtained that provide a direct relationship between the eddy tilt and the phase difference of a normal mode solution. This allows a straightforward interpretation of the eddy-mean flow interaction in terms of classical stability theory: the initially unstable jet gives rise to eddies which are tilted “against the shear” and extract energy from the mean flow; once the jet stabilises, eddies become tilted “with the shear” and return their energy to the mean flow. For a nonzero planetary vorticity gradient, ray-tracing theory is used to predict ellipse geometry and its impact on eddy propagation within a jet. An analytic solution for the eddy tilt is found for a Rossby wave on a constant background shear. The ray tracing results broadly agree with the eddy tilt diagnosed from a fully nonlinear simulation

    Activation of mTOR coincides with autophagy during ligation-induced atrophy in the rat submandibular gland

    Get PDF
    Salivary gland atrophy is a common consequence of pathology, including Sjögren's syndrome, irradiation therapy and obstructive sialadenitis. During severe atrophy of the rat submandibular gland caused by excretory duct ligation, the majority of acinar cells disappear through apoptosis, whereas ductal cells proliferate and dedifferentiate; yet, the gland can survive in the atrophic state almost indefinitely, with an ability to fully recover if deligated. The control mechanisms governing these observations are not well understood. We report that ∌10% of acinar cells survive in ligation-induced atrophy. Microarray and quantitative real-time PCR analysis of ligated glands indicated sustained transcription of acinar cell-specific genes, whereas ductal-specific genes were reduced to background levels. After 3 days of ligation, activation of the mammalian target of rapamycin (mTOR) pathway and autophagy occurred as shown by phosphorylation of 4E-BP1 and expression of autophagy-related proteins. These results suggest that activation of mTOR and the autophagosomal pathway are important mechanisms that may help to preserve acinar cells during atrophy of salivary glands after injury

    Mechanical properties and microstructure of VPS and HVOF CoNiCrAlY coatings

    Get PDF
    HVOF and VPS coatings were sprayed using a Praxair (CO-210-24) CoNiCrAlY powder. Free standing coatings underwent vacuum annealing at different temperatures for times of up to 840h. Feedstock powder, as-sprayed and annealed coatings were characterised by SEM, EDS and XRD. The hardness and Young’s modulus of as-sprayed and annealed HVOF and VPS coatings were measured, including determination of Young’s moduli of the individual phases via nanoindentation and measurement of Young’s moduli of coatings at temperatures up to 500°C. The Eshelby inclusion model was used to investigate the effect of microstructure on the coatings’ mechanical properties. The sensitivity of the mechanical properties to microstructural details was confirmed. Young’s modulus was constant to ~200°C then decreased with increasing measurement temperature. Annealing increased Young’s modulus due to a combination of decreased porosity and ÎČ volume fraction. Oxide stringers in the HVOF coating maintained its higher hardness than the VPS coating even after annealing

    An overview of using small punch testing for mechanical characterization of MCrAlY bond coats

    Get PDF
    Considerable work has been carried out on overlay bond coats in the past several decades because of its excellent oxidation resistance and good adhesion between the top coat and superalloy substrate in the thermal barrier coating systems. Previous studies mainly focus on oxidation and diffusion behavior of these coatings. However, the mechanical behavior and the dominant fracture and deformation mechanisms of the overlay bond coats at different temperatures are still under investigation. Direct comparison between individual studies has not yet been achieved due to the fragmentary data on deposition processes, microstructure and, more apparently, the difficulty in accurately measuring the mechanical properties of thin coatings. One of the miniaturized specimen testing methods, small punch testing, appears to have the potential to provide such mechanical property measurements for thin coatings. The purpose of this paper is to give an overview of using small punch testing to evaluate material properties and to summarize the available mechanical properties that include the ductile-to-brittle transition and creep of MCrAlY bond coat alloys, in an attempt to understand the mechanical behavior of MCrAlY coatings over a broad temperature range

    Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air-sea interactions?

    Get PDF
    Purpose of Review. To provide a snapshot of the current research on the oceanic forcing of the atmospheric circulation in midlatitudes and a concise update on previous review papers. Recent findings. Atmospheric models used for seasonal and longer timescales predictions are starting to resolve motions so far only studied in conjunction with weather forecasts. These phenomena have horizontal scales of ~ 10–100 km which coincide with energetic scales in the ocean circulation. Evidence has been presented that, as a result of this matching of scale, oceanic forcing of the atmosphere was enhanced in models with 10–100 km grid size, especially at upper tropospheric levels. The robustness of these results and their underlying mechanisms are however unclear. Summary. Despite indications that higher resolution atmospheric models respond more strongly to sea surface temperature anomalies, their responses are still generally weaker than those estimated empirically from observations. Coarse atmospheric models (grid size greater than 100 km) will miss important signals arising from future changes in ocean circulation unless new parameterizations are developed

    Populist Mobilization: A New Theoretical Approach to Populism*

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112280/1/j.1467-9558.2011.01388.x.pd

    Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein

    Get PDF
    Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhe-sion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized poly- mers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate-forming adhesives, mechanically improved nano- and micro-composite adhesive hydrogels, as well as smart and self-healing materials. Finally, we review the applications of catechol-functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings
    • 

    corecore