10 research outputs found

    Impacts of soil conditions and light availability on natural regeneration of Norway spruce Picea abies (L.) H. Karst. in low-elevation mountain forests

    Get PDF
    & Key message Natural regeneration of P. abies (L.) H. Karst. may reach high densities in lower mountain elevations. The highest densities were found in sites with moderate light availability, with low pH, and not near the riverbank. However, age-height classes differed in the predicted magnitude of response, but were consistent in response directions. Mosses and understory species typical of coniferous forests were positively correlated with regeneration density. & Context Norway spruce Picea abies (L.) H. Karst. in Central Europe is at risk under climate change scenarios, particularly in mountain regions. Little is known about the impact of environmental factors on the natural regeneration of P. abies in lowelevation mountain forests. & Aims We aimed to assess impacts of distance from the riverbank, soil pH, and light availability on natural P. abies regeneration. We hypothesized that (1) natural P. abiesregeneration would depend on light availability and soil pH and (2) there are understory plant species which may indicate the microsites suitable for natural regeneration of P. abies. & Methods The study was conducted in the Stołowe Mountains National Park (SW Poland, 600–800 m a.s.l.). We established 160 study plots (25 m2 ) for natural regeneration, light availability, soil pH, and understory vegetation assessment

    San Crescenziano di Città di Castello. Storia e culto di un martire dalle origini all'età moderna

    No full text
    Atti del convegno di studi su san Crescenziano da Città di Castello (Crescentino ad Urbino), martire paleocristiano. I saggi sono dedicati ad aspetti storici, agiografici, iconografici del santo e del suo culto, nonché a questioni più generali di storia e letteratura medievale

    Benchmarking plant diversity of Palaearctic grasslands and other open habitats

    Get PDF
    Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology

    Benchmarking plant diversity of Palaearctic grasslands and other open habitats

    No full text
    Abstract Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m² and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology

    Species better track climate warming in the oceans than on land

    No full text
    corecore