32 research outputs found

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.Peer reviewe

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    14 p.Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change

    Earthworms contribute to ecosystem process in no-till systems with high crop rotation intensity in Argentina

    No full text
    In the Pampas region of Argentina agriculture is dominated by intensive no-till (NT) soybean cropping which produce negative consequences on soil quality. A group of farmers started to use the Good Agricultural Practices (GAP) which include a higher crop rotation, use of winter cover crops and nutrient restoration. In this NT system earthworms have a significant role in soil functioning, particularly in organic matter cycling and soil structure formation. The aim of this paper was to examine the contribution of earthworm activity to the process of C incorporation and soil structure maintenance in soils with different NT variants of: NT with GAP for 30 years (NT + r30); NT with some of the GAP for 12 years (NT-r12) and NT with soybean monoculture (NTm). Also a natural grassland (NA) was sampled as a reference. Earthworm aggregates were obtained by gently separating them from surrounding soil. Fine (HOC) and coarse (POC) organic matter fractions, water-stable aggregates (WSA) and mean weight diameter (MWD) were calculated for earthworm aggregates and bulk soil. In all sites only one species (Aporrectodea caliginosa) was found, with higher density in the NA, followed by NT + r30, that had about 9 times more earthworms than NTm. The number of earthworm aggregates was higher in the NT + r30 followed by the NA, both showing differences with the other NT systems. The earthworm aggregates in NA and NT + r30 had significantly more POC than the surrounding soil (230% increase in NA and 100% NT + r30). Earthworm casts had higher values of MWD and WSA than physical soil aggregates in both NA and NT + r30 management treatments. Our results show the existence of a positive feedback loop we called earthworm-driven virtuous cycle. The increase in earthworm abundance promotes higher production of earthworm aggregates which are richer in organic matter and more water stable than the surrounding soil. This has favourable results in terms of soil quality but also increase crop yields (57% in maize and 18% in soybean), by means of biologically mediated soil processes, which is a highly desirable way to sustainability of agricultural production. Farmers, politicians and the whole society should pay more attention to soil as a key component supporting agricultural production by means of internal biological soil functioning.Fil: Bedano, José Camilo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente; ArgentinaFil: Vaquero, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; ArgentinaFil: Domínguez, Anahí. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente; ArgentinaFil: Rodríguez, María Pía. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; ArgentinaFil: Wall, Luis Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Interacciones Biológicas; ArgentinaFil: Lavelle, P.. Université Pierre et Marie Curie; Franci
    corecore